Search results for "CHEMICAL-VAPOR-DEPOSITION"

showing 4 items of 4 documents

Electroluminescence and transport properties in amorphous silicon nanostructures

2006

We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend …

Amorphous siliconVISIBLE ELECTROLUMINESCENCEMaterials sciencePhysics and Astronomy (miscellaneous)nanostructures; silicon; elecroluminescenceExcitonBioengineeringElectronQUANTUM DOTSElectroluminescenceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiachemistry.chemical_compoundnanostructuresGeneral Materials ScienceSI-RICH SIO2Electrical and Electronic EngineeringLIGHT-EMITTING DEVICESEngineering (miscellaneous)business.industryMechanical EngineeringsiliconGeneral ChemistryAtmospheric temperature rangeAmorphous solidCHEMICAL-VAPOR-DEPOSITIONelecroluminescenceNanocrystalchemistryMechanics of MaterialsOptoelectronicsMaterials Science (all)businessLuminescenceNanotechnology
researchProduct

Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains

2015

Here we present the formation of predominantly sp-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, CCl (HCB), and pentachloropyridine, NCCl (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM…

ChemistryGrapheneScanning electron microscopeInorganic chemistryGeneral Chemistry7. Clean energyBiochemistryCatalysis3. Good healthlaw.inventionMagnetizationsymbols.namesakeColloid and Surface ChemistryX-ray photoelectron spectroscopylawTransmission electron microscopysymbolsCarbide-derived carbonPhysical chemistryPyrolytic carbonRaman spectroscopyCHEMICAL-VAPOR-DEPOSITION; N-DOPED GRAPHENE; RECENT PROGRESS; FILMS; ELECTROCATALYSTS; NANORIBBONS; RADICALS; STATE
researchProduct

A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films

2020

For large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1-1.4 angstrom/cycle for substrate tempe…

DECOMPOSITIONMaterials scienceSubstrate (electronics)Chemical vapor depositionEPITAXYEpitaxyPyrophoricitychemistry.chemical_compoundAtomic layer depositionTHIN-FILMSDeposition (phase transition)alumiiniThin filmTEMPERATUREplasma processingAL2O3Surfaces and InterfacesatomikerroskasvatusCondensed Matter PhysicsSurfaces Coatings and FilmsChemistryCHEMICAL-VAPOR-DEPOSITIONPhysics and AstronomySINGLEchemistryChemical engineeringALDatomic layer depositionAlkoxideGROWTHohutkalvotJournal of Vacuum Science & Technology A
researchProduct

Properties of atomic layer deposited nanolaminates of zirconium and cobalt oxides

2018

Producción Científica

Materials scienceSilicon116 Chemical sciencesta221chemistry.chemical_element02 engineering and technologyDielectricChemical vapor deposition7. Clean energy01 natural sciencesSpray pyrolysisThermal barrier coatingÓxidos metálicosSPRAY-PYROLYSISDIELECTRICSnanorakenteetmagnetoelectrics0103 physical sciencesNanolaminatesnanolaminatesSILICON010302 applied physicsZirconiumta114ZRO2 THIN-FILMSCO3O4 FILMSBUFFER LAYERatomikerroskasvatus021001 nanoscience & nanotechnologyElectronic Optical and Magnetic MaterialsTHERMAL BARRIER COATINGSCHEMICAL-VAPOR-DEPOSITIONchemistryChemical engineeringLASER DEPOSITIONNanoláminasatomic layer depositionMetal oxides221 Nano-technologyohutkalvot0210 nano-technologyLayer (electronics)CobaltGAS SENSORS
researchProduct