Search results for "CILIOGENESIS"

showing 10 items of 39 documents

Ciliopathies: an Update

2015

Cilia are hair-like organelles that extend from the surface of almost all human cells. Nine doublet microtubule pairs make up the core of each cilium, known as the axoneme. Cilia are classified as motile or immotile; non motile or primary cilia are involved in sensing the extracellular environment. These organelles mediate perception of chemo-, mechano- and osmosensations that are then transmitted into the cell via signaling pathways. They also play a crucial role in cellular functions including planar cell polarity, cell division, proliferation and apoptosis. Because of cilia are located on almost all polarized human cell types, cilia-related disorders, can affect many organs and systems. …

AxonemeCell divisionMicrotubuleMucociliary clearanceCiliumCiliogenesisMorphogenesisBiologyCiliopathiesCell biologyPediatrics Research International Journal
researchProduct

Different roles for KIF17 and kinesin II in photoreceptor development and maintenance.

2009

Kinesin 2 family members are involved in transport along ciliary microtubules. In Caenorhabditis elegans channel cilia, kinesin II and OSM-3 cooperate along microtubule doublets of the axoneme middle segment, whereas OSM-3 alone works on microtubule singlets to elongate the distal segment. Among sensory cilia, vertebrate photoreceptors share a similar axonemal structure with C. elegans channel cilia, and deficiency in either kinesin II or KIF17, the homologue of OSM-3, results in disruption of photoreceptor organization. However, direct comparison of the two effects is confounded by the use of different species and knockdown strategies in prior studies. Here, we directly compare the effects…

AxonemeEmbryo NonmammalianBlotting WesternKinesinsBiologyArticleMiceMicroscopy Electron TransmissionMicrotubuleCiliogenesisAnimalsImmunoprecipitationKinesin 8Microscopy ImmunoelectronZebrafishZebrafishKIF17CiliumfungiZebrafish Proteinsbiology.organism_classificationImmunohistochemistryCell biologyRetinal Cone Photoreceptor CellsKinesinsense organsDevelopmental BiologyDevelopmental dynamics : an official publication of the American Association of Anatomists
researchProduct

Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts

2021

Abstract Background Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alstrom syndrome (AS), they are known as the ‘obesity ciliopathies’ due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliop…

BBS2AdultMaleMedicine (General)AdolescentNonsense mutationAminopyridinesCell Cycle ProteinsCiliopathiesGeneral Biochemistry Genetics and Molecular Biologychemistry.chemical_compoundR5-920AtalurenCiliogenesismedicineHumansReceptors SomatostatinBardet-Biedl SyndromeAlstrom SyndromeCells CulturedOxadiazolesbusiness.industryTumor Suppressor ProteinsTranslational readthroughRProteinsGeneral MedicineFibroblastsmedicine.diseaseNonsense suppressionCiliopathiesAtalurenCiliopathyALMS1chemistryCodon NonsenseAmlexanoxCancer researchMedicineBBS2businessAlström syndromeResearch PaperEBioMedicine
researchProduct

A ciliopathy complex builds distal appendages to initiate ciliogenesis

2021

ABSTRACTCells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and super-resolved imaging, we identified a module which we term DISCO (DIStal centriole COmplex). DISCO components CEP90, MNR and OFD1 underlie human ciliopathies. This complex localized to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR did not generate cilia, failed to assemble distal appendages, and did not transduce Hedgehog signals. Disrupting the satellite pools did not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critica…

BioquímicaCentrioleGreen Fluorescent ProteinsRetinal Pigment EpitheliumBiologyCiliopathiesCell LineMice03 medical and health sciences0302 clinical medicineBacterial ProteinsGenes ReporterCiliogenesismedicineAnimalsHumansbiochemistryCiliadevelopmentHedgehogCentrioles030304 developmental biologyMice KnockoutAppendage0303 health sciencesCiliumciliaProteinsEpithelial CellscytoskeletonCell BiologyEmbryo Mammalianmedicine.diseaseCiliopathiesCell biologyMice Inbred C57BLLuminescent ProteinsCiliopathyGene Expression RegulationMicrotubule-Associated Proteins030217 neurology & neurosurgerySignal TransductionJournal of Cell Biology
researchProduct

The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic

2022

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators a…

Cell divisionGTPase-activating proteinGolgi ApparatusGTPaseBiologyMicrotubulesMitochondrial Dynamicssymbols.namesakeMiceMicrotubuleCiliogenesisAnimalsCiliaMolecular BiologyADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCorrectionCell BiologyGolgi apparatusFibroblastsCell biologyCytoskeletal Proteinsmitochondrial fusionsymbolsSignal Transduction
researchProduct

The entangled relationship between cilia and actin

2020

Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different acti…

Feedback Physiological0301 basic medicineCiliumCiliary basal bodymacromolecular substancesCell BiologyBiologymedicine.diseaseBiochemistryCiliopathiesActinsCell biology03 medical and health sciencesCiliopathy030104 developmental biology0302 clinical medicineMicrotubule030220 oncology & carcinogenesisCiliogenesismedicineAnimalsHumansBasal bodyCiliaActinThe International Journal of Biochemistry & Cell Biology
researchProduct

Ofd1, a Human Disease Gene, Regulates the Length and Distal Structure of Centrioles

2010

SUMMARYCentrosomes and their component centrioles represent the principal microtubule organizing centers of animal cells. Here we show that the gene underlying Orofaciodigital Syndrome 1, Ofd1, is a component of the distal centriole that controls centriole length. In the absence of Ofd1, distal regions of centrioles, but not procentrioles, elongate abnormally. These long centrioles are structurally similar to normal centrioles, but contain destabilized microtubules with abnormal post-translational modifications. Ofd1 is also important for centriole distal appendage formation and centriolar recruitment of the intraflagellar transport protein Ift88. To model OFD1 Syndrome in embryonic stem ce…

G2 PhaseCentrioleMicrotubule-associated proteinMutation MissenseHUMDISEASECell Cycle ProteinsBiologyMicrotubulesModels BiologicalArticleGeneral Biochemistry Genetics and Molecular BiologyCentriole elongationCell LineMiceIntraflagellar transportCiliogenesisAnimalsHumansBasal bodyMolecular BiologyEmbryonic Stem CellsCentriolesTumor Suppressor ProteinsProteinsCell BiologyOrofaciodigital SyndromesPhosphoproteinsRecombinant ProteinsCell biologyCentrosomeCELLBIOCentriolar satelliteMicrotubule-Associated ProteinsDevelopmental Biology
researchProduct

Roles for ELMOD2 and Rootletin in ciliogenesis.

2021

AbstractELMOD2 is a GTPase activating protein (GAP) with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the fin…

GTPase-activating proteinBiologyMicrotubulesMitochondrial DynamicsCell Line03 medical and health sciencesMice0302 clinical medicineMicrotubuleGTP-Binding ProteinsCiliogenesisAnimalsHumansCiliaMolecular Biology030304 developmental biologyCytokinesisCentrosome0303 health sciencesADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCell BiologyArticlesFibroblastsCell biologyMitochondriaCytoskeletal Proteinsmitochondrial fusionCentrosomeCentrinRootletin030217 neurology & neurosurgeryCytokinesisSignal TransductionMolecular biology of the cell
researchProduct

Usher syndrome and Leber congenital amaurosis are molecularly linked via a novel isoform of the centrosomal ninein-like protein.

2009

Contains fulltext : 80984.pdf (Publisher’s version ) (Closed access) Usher syndrome (USH) and Leber congenital amaurosis (LCA) are autosomal recessive disorders resulting in syndromic and non-syndromic forms of blindness. In order to gain insight into the pathogenic mechanisms underlying retinal degeneration, we searched for interacting proteins of USH2A isoform B (USH2A(isoB)) and the LCA5-encoded protein lebercilin. We identified a novel isoform of the centrosomal ninein-like protein, hereby named Nlp isoform B (Nlp(isoB)), as a common interactor. Although we identified the capacity of this protein to bind calcium with one of its three EF-hand domains, the interacton with USH2A(isoB) did …

Gene isoformRetinal degenerationCandidate geneGenetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeMolecular Sequence DataOptic Atrophy Hereditary LeberBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]CiliopathiesRetinaCell LineMiceCiliogenesisTwo-Hybrid System TechniquesGeneticsmedicineotorhinolaryngologic diseasesAnimalsHumansProtein IsoformsPhotoreceptor CellsAmino Acid SequenceNuclear proteinRats WistarEye ProteinsMolecular BiologyGenetics (clinical)GeneticsExtracellular Matrix ProteinsCiliumNuclear ProteinsGeneral MedicineArticlesmedicine.diseaseRatsMice Inbred C57BLMicrotubule-Associated ProteinsSequence AlignmentUsher SyndromesFunctional Neurogenomics [DCN 2]Protein BindingHuman Molecular Genetics
researchProduct

2015

Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 -/- null mice possess a Joubert syndrom…

Genetics0303 health sciencesEnzyme complexCiliumCiliary basal bodyBiologymedicine.diseaseJoubert syndromeCell biology03 medical and health sciences0302 clinical medicineMicrotubuleCiliogenesismedicineBasal bodyCiliary base030217 neurology & neurosurgery030304 developmental biologyGenome Biology
researchProduct