Search results for "CO2"
showing 10 items of 402 documents
Ocean acidification does not impair predator recognition but increases juvenile growth in a temperate wrasse off CO2seeps
2017
8 pages, 4 figures, supplementary data https://doi.org/10.1016/j.marenvres.2017.10.013
Responses of marine benthic microalgae to elevated CO2
2011
Increasing anthropogenic CO emissions to the atmosphere are causing a rise in pCO concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO concentrations increased. CO enrichment caused significant increa…
Fish assemblages cope with ocean acidification in a shallow volcanic CO2 vent benefiting from an adjacent recovery area
2020
Shallow CO2 vents are used to test ecological hypotheses about the effects of ocean acidification (OA). Here, we studied fish assemblages associated with Cymodocea nodosa meadows exposed to high pCO2/low pH conditions at a natural CO2 vent in the Mediterranean Sea. Using underwater visual census, we assessed fish community structure and biodiversity in a low pH site (close to the CO2 vent), a close control site and a far control site, hypothesising a decline in biodiversity and a homogenization of fish assemblages under OA conditions. Our findings revealed that fish diversity did not show a unique spatial pattern, or even significant relationships with pH, but correlated with seagrass leaf …
Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities.
2013
To reduce the negative effect of climate change on Biodiversity, the use of geological CO2 sequestration has been proposed; however leakage from underwater storages may represent a risk to marine life. As extracellular homeostasis is important in determining species' ability to cope with elevated CO2, we investigated the acid-base and ion regulatory responses, as well as the density, of sea urchins living around CO2 vents at Vulcano, Italy. We conducted in situ transplantation and field-based laboratory exposures to different pCO2/pH regimes. Our results confirm that sea urchins have some ability to regulate their extracellular fluid under elevated pCO2. Furthermore, we show that even in cl…
Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea nodosa: Evidence from volcanic seeps
2021
Population reconstruction techniques was used to assess for the first time the population dynamics of a seagrass, Cymodocea nodosa, exposed to long-term elevated CO2 near three volcanic seeps and compared them with reference sites away from the seeps. Under high CO2, the density of shoots and of individuals (apical shoots), and the vertical and horizontal elongation and production rates, were higher than at the reference sites. Nitrogen limitation effects on rhizome elongation and production rates and on biomass were more evident than CO2 as these were highest at the location where the limitation of nitrogen was highest. At the seep where the availability of CO2 was highest and nitrogen low…
Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain
2020
Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wr…
Resilience of the seagrass Posidonia oceanica following pulse-type disturbance.
2020
Understanding the response of species to disturbance and the ability to recover is crucial for preventing their potential collapse and ecosystem phase shifts. Explosive submarine activity, occurring in shallow volcanic vents, can be considered as a natural pulse disturbance, due to its suddenness and high intensity, potentially affecting nearby species and ecosystems. Here, we present the response of Posidonia oceanica, a long-lived seagrass, to an exceptional submarine volcanic explosion, which occurred in the Aeolian Archipelago (Italy, Mediterranean Sea) in 2002, and evaluate its resilience in terms of time required to recover after such a pulse event. The study was carried out in 2011 i…
Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
2019
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution…
Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science
2021
Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-in…
Effects of Modified Atmosphere Packaging and Chitosan Treatment on Quality and Sensorial Parameters of Minimally Processed cv. ‘Italia’ Table Grapes
2021
Table grape is a non-climacteric fruit, very sensitive to water loss and gray mold during postharvest handling and storage. The aim of this work was to evaluate the effects of modified atmosphere packaging and chitosan treatment on quality and sensorial parameters of minimally processed cv. ‘Italia’ table grape during cold storage (14 days at 5 °C) and shelf-life (7 and 14 days of cold storage plus 5 days at 20 °C), reproducing a retail sales condition. Our data showed a significant effect of high CO2-modified atmosphere in combination with chitosan and alone on preserving quality, sensorial parameters, and delaying decay of minimally processed table grape. The most effective treatment in t…