6533b7d0fe1ef96bd125a2f6

RESEARCH PRODUCT

Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain

Alexia Massa-gallucciRui SantosBegoña Martínez-cregoCristina AndolinaMaria Cristina GambiSalvatrice VizziniGianmaria Califano

subject

0106 biological sciencesSettore BIO/07 - EcologiaStable isotope analysis010504 meteorology & atmospheric sciencesEcosystem ecologyOceans and Seaslcsh:Medicineocean acidification010603 evolutionary biology01 natural sciencesArticlePredationEnvironmental impactHydrothermal Ventsstable isotopeAnimalsEcosystemSeawater14. Life underwaterHerbivorylcsh:ScienceEcosystem0105 earth and related environmental sciencesTrophic levelCO2 ventMarine biologyHerbivoreMultidisciplinaryAlismatalesbiologyfood webEcologyClimate-change ecologyfungilcsh:RFishesOcean acidification15. Life on landHydrogen-Ion Concentrationbiology.organism_classificationSeagrassHabitat destructionHabitat13. Climate actionSea UrchinsEnvironmental sciencelcsh:Q

description

Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans. The research was funded by an ASSEMBLE access project within the EU FP7/2007–2013 program (grant agreement n° 227799) hosted by MCG at the SZN. The Portuguese FCT– Fundação para a Ciência e a Tecnologia funded BMC in the ambit of the contract program DL57/2016/CP1361/CT0004 and CCMAR through the project UID/Multi/04326/2019. info:eu-repo/semantics/publishedVersion

10.1038/s41598-020-61753-1https://hdl.handle.net/10400.1/14550