0000000000114882
AUTHOR
Alexia Massa-gallucci
Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain
Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wr…
A New Network for the Advancement of Marine Biotechnology in Europe and Beyond
Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. in addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomateria…
The essentials of marine biotechnology
Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of ma…
Stable isotope and fatty acid analysis reveal the ability of sea cucumbers to use fish farm waste in integrated multi-trophic aquaculture
Stable isotope ratios, carbon (δ13C) and nitrogen (δ15N), and fatty acids validated the trophic connection between farmed fish in a commercial nearshore fish farm and sea cucumbers in the Mediterranean Sea. This dual tracer approach evaluated organic matter transfer in integrated multi-trophic aquaculture (IMTA) and the ability of sea cucumbers to incorporate fish farm waste (fish faeces and uneaten artificial fish feed) into their tissue. Between October 2018 and September 2019, Holothuria (Roweothuria) poli Delle Chiaje, 1824, co-cultured at IMTA sites directly below one of the commercial fish cage , at 10 m and 25 m from the selected fish cage, and at two reference sites over 800 m from …
Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean
Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Reg…
Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers
AbstractIncreasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2 enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, becaus…