Search results for "CONDENSATE"

showing 10 items of 208 documents

Landau‐Zener transition for association of an atomic Bose‐Einstein condensate with interparticle elastic interactions included.

2008

[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Landau-Zener Transition[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph][PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Bose-Einstein Condensate
researchProduct

Combination of searches for anomalous top quark couplings with 5.4 fb−1 of pp¯ collisions

2012

We present measurements of the tWb coupling form factors using information from electroweak single top quark production and from the helicity of W bosons from top quark decays in t (t) over bar events. We set upper limits on anomalous tWb coupling form factors using data collected with the DO detector at the Tevatron p (p) over bar collider corresponding to an integrated luminosity of 5.4 fb(-1).

PhysicsNuclear and High Energy PhysicsTop quarkParticle physicsLuminosity (scattering theory)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionTevatronTop quark condensate01 natural sciencesHelicitylaw.inventionNuclear physicslaw0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsColliderBosonPhysics Letters B
researchProduct

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Excitonic Transitions in Homoepitaxial GaN

2001

The photoluminescence spectrum of a high quality homoepitaxial GaN film has been measured as a function of temperature. As temperature increases the recombination of free excitons dominates the spectra. Their energy shift has successfully fitted in that temperature range by means of the Bose-Einstein expression instead of Varshni's relationship. Values for the parameters of both semi-empirical relations describing the energy shift are reported and compared with the literature.

PhotoluminescenceCondensed matter physicsChemistryExcitonAtmospheric temperature rangeCondensed Matter PhysicsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionCondensed Matter::Materials Sciencesymbols.namesakeQuality (physics)lawsymbolsMetalorganic vapour phase epitaxyRaman spectroscopyBose–Einstein condensatephysica status solidi (b)
researchProduct

Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap

2014

We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsAtomic Physics (physics.atom-ph)Condensed Matter::OtherCondensationGeneral Physics and AstronomyFOS: Physical scienceslaw.inventionPhysics - Atomic PhysicsTrap (computing)lawElectromagnetic coilPhase spaceMagnetic trapQuadrupolePhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Bose–Einstein condensateEvaporative cooler
researchProduct

Heavy quark impact factor and the single bottom production at the LHC

2014

Grigorios Chachamis Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: grigorios.chachamis@ific.uv.es Michal Deak∗ Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: michal.deak@ific.uv.es

Nuclear physicsQuarkPhysicsParticle physicsTop quarkLarge Hadron ColliderB mesonTop quark condensatePhenomenology (particle physics)Bottom quarkProceedings of XXI International Workshop on Deep-Inelastic Scattering and Related Subjects — PoS(DIS 2013)
researchProduct

Manipulation of optical solitons in Bose-Einstein condensates

2004

We propose a method to control the optical transparency of a Bose-Einstein condensate with working energy levels of the Lambda-type. The reported effects are essentially nonlinear and are considered in the framework of an exactly solvable model describing the interaction of light with a Lambda-type medium. We show how the complicated nonlinear interplay between fast and slow solitons in the $\Lambda$-type medium points to a possibility to create optical gates as well as to a possibility to store optical information.

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsPhysics and Astronomy (miscellaneous)FOS: Physical sciencesOptical transparencyAtomic and Molecular Physics and Opticslaw.inventionNonlinear systemlawQuantum mechanicsQuantum Physics (quant-ph)Bose–Einstein condensateEnergy (signal processing)
researchProduct

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC

2019

Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.

heavy ion: scatteringScale (ratio)Field (physics)Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsinitial stateNuclear ExperimentNuclear ExperimentBrookhaven RHIC CollPhysicsLarge Hadron Collider010308 nuclear & particles physicsfluctuationelliptic flowparticle: multiplicityElliptic flowObservableHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensateParticlescale: saturation
researchProduct

Multiplicity distributions and long range rapidity correlations

2010

The physics of the initial conditions of heavy ion collisions is dominated by the nonlinear gluonic interactions of QCD. These lead to the concepts of parton saturation and the Color Glass Condensate (CGC). We discuss recent progress in calculating multi-gluon correlations in this framework, prompted by the observation that these correlations are in fact easier to compute in a dense system (nucleus-nucleus) than a dilute one (proton-proton).

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesmedicineRapidityBoundary value problemMultiplicity (chemistry)Nuclear Experiment010306 general physicsQuantum chromodynamicsPhysicsta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyNonlinear systemmedicine.anatomical_structureHigh Energy Physics::ExperimentNucleusNuclear Physics A
researchProduct