Search results for "CONDENSATE"
showing 10 items of 208 documents
Landau‐Zener transition for association of an atomic Bose‐Einstein condensate with interparticle elastic interactions included.
2008
Combination of searches for anomalous top quark couplings with 5.4 fb−1 of pp¯ collisions
2012
We present measurements of the tWb coupling form factors using information from electroweak single top quark production and from the helicity of W bosons from top quark decays in t (t) over bar events. We set upper limits on anomalous tWb coupling form factors using data collected with the DO detector at the Tevatron p (p) over bar collider corresponding to an integrated luminosity of 5.4 fb(-1).
Structure of longitudinal chromomagnetic fields in high energy collisions
2014
We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.
Excitonic Transitions in Homoepitaxial GaN
2001
The photoluminescence spectrum of a high quality homoepitaxial GaN film has been measured as a function of temperature. As temperature increases the recombination of free excitons dominates the spectra. Their energy shift has successfully fitted in that temperature range by means of the Bose-Einstein expression instead of Varshni's relationship. Values for the parameters of both semi-empirical relations describing the energy shift are reported and compared with the literature.
Bose-Einstein Condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap
2014
We report a novel approach for preparing a Bose-Einstein condensate (BEC) of $^{87}$Rb atoms using electro-pneumatically driven transfer of atoms into a Quadrupole-Ioffe magnetic trap (QUIC Trap). More than 5$\times$$10^{8}$ atoms from a Magneto-optical trap are loaded into a spherical quadrupole trap and then these atoms are transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil, thereby, changing the distance between quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80 \%. This approach is different from a conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed…
Heavy quark impact factor and the single bottom production at the LHC
2014
Grigorios Chachamis Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: grigorios.chachamis@ific.uv.es Michal Deak∗ Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: michal.deak@ific.uv.es
Manipulation of optical solitons in Bose-Einstein condensates
2004
We propose a method to control the optical transparency of a Bose-Einstein condensate with working energy levels of the Lambda-type. The reported effects are essentially nonlinear and are considered in the framework of an exactly solvable model describing the interaction of light with a Lambda-type medium. We show how the complicated nonlinear interplay between fast and slow solitons in the $\Lambda$-type medium points to a possibility to create optical gates as well as to a possibility to store optical information.
Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections
2021
Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …
Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC
2019
Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.
Multiplicity distributions and long range rapidity correlations
2010
The physics of the initial conditions of heavy ion collisions is dominated by the nonlinear gluonic interactions of QCD. These lead to the concepts of parton saturation and the Color Glass Condensate (CGC). We discuss recent progress in calculating multi-gluon correlations in this framework, prompted by the observation that these correlations are in fact easier to compute in a dense system (nucleus-nucleus) than a dilute one (proton-proton).