Search results for "CONFINEMENT"
showing 10 items of 213 documents
Compressive behaviour of concrete elliptical columns confined by single hoops
2007
The compressive behaviour of short concrete members having elliptical cross-sections and confined with single steel hoops is investigated. An analytical model is given for calculation of the stress-strain curves of compressed members also including the valuation of the ultimate stress corresponding to formation of a complete failure plane in the concrete core. The model is able to evaluate the confining pressure due to steel hoops referring to a fictitious reduced area of the confined core and to the effective stresses in the hoops, which are variable along the perimeter; moreover, it makes it possible to determine the maximum compressive strength and the corresponding strain of the confine…
Effect of FRP Wraps on the Compressive Behaviour of Slender Masonry Columns
2017
In the last decade, Fibre Reinforced Polymer (FRP) wrapping technique has become a common method to retrofit masonry piers or columns with poor structural performances. The passive confinement effect induced by the external wrap allows increasing the compressive strength and ductility of the member. Several studies highlighted as the efficacy of this technique is affected by several key parameters, including the shape of the transverse cross section, stress intensification at the strength corner of sharp sections, amount and mechanical properties of adopted composite. Despite this technique has been widely studied from both theoretical and experimental point of view, most of studies focused…
Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling
2014
Abstract The structural behaviour of concrete columns strengthened with a system made up of fibre nets embedded in an inorganic stabilized cementitious matrix under an uniaxial load was investigated. Medium size specimens with circular and square cross-section were cast and subjected to monotonic uniaxial compression, to investigate the efficiency of a p-Phenylene BenzobisOxazole (PBO) Fibre Reinforced Cementitious Mortar (FRCM) system in increasing both strength and ductility. The experimental results show that the confinement system adopted produced a noticeable increment in strength and ductility, though the low mechanical ratios of fibre considered were not always able to ensure hardeni…
EFFICACY OF PBO-FRCM STRENGTHENING OF RC COLUMNS IN MRFS
2019
Innovative materials and techniques are widespread used for the strengthening and rehabilita-tion of existing structures. Recent researches have been developed on new fiber reinforced composites in which epoxy resin is replaced by inorganic cementitious material. These kind of cement-based composite material is known as Fiber Reinforced Cementitious Matrices (FRCM) recently used also in combination with synthetic polymeric fibers named PBO. The efficiency of this new confining system has been demonstrated by a large number of com-pression tests on concrete specimens while there are only few experimental researches on the behaviour of large scale specimens under external action able to simul…
R.C. columns strengthened by PBO-FRCM under axial force and bending moment
2017
Fabric-Reinforced Cementitious Matrix (FRCM) systems, also known as Textile Reinforced Concrete (TRC) are nowadays widely used as confining material to enhance both strength and deformation capacity of columns of seismic resistant r.c. frames. In the past, when carbon fiber was used in the textile, experimental results showed that the efficiency of the wrapping is limited by the connection between substrate and fiber, which is not as effective as when epoxy resins are used. To improve the strength of the connection between fibres and mortar binder in FRCM system, the use of p-Phenylene BenzobisOxazole (PBO), having a molecular structure capable of establishing chemical bonds with hydrated c…
Core (XUV/VUV) and boundary (UV/vis/IR) plasma spectroscopy in fusion devices
2021
This contribution describes the basic applications of passive optical emission spectroscopy in the visible and far-UV region of electromagnetic radiation to diagnostics of the magnetic confinement fusion plasma. To simplify and condense the broad topic it presents the most common ways of analyzing the spectra of atoms, ions and molecules in fusion plasma and disseminating results of those analysis to the non-spectroscopists. It provides the reasons for choosing some particular regions, elements and charge states to determine the impurity content and plasma-surface interactions in MCF (Magnetic Confinement Fusion) reactor. Examples used in the contribution are predominantly from measurements…
A glimpse of gluons through deeply virtual compton scattering on the proton
2017
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…
Dielectric Relaxations in Confined Hydrated Myoglobin
2009
In this work we report the results of a broadband dielectric spectroscopy study on the dynamics of a globular protein, myoglobin, in confined geometry, i.e. encapsulated in a porous silica matrix, at low hydration levels, where about only one or two water layers surround the proteins. In order to highlight the specific effect of confinement in the silica host, we compared this system with hydrated myoglobin powders at the same hydration levels. The comparison between the data relative to the two different systems indicates that geometrical confinement within the silica matrix plays a crucial role in protein-water dielectric relaxations, the effect of sol-gel encapsulation being essentially …
Heavy quarkonium: progress, puzzles, and opportunities
2011
A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…
Confinement, the gluon propagator and the interquark potential for heavy mesons
2012
The interquark static potential for heavy mesons described by a massive one-gluon exchange interaction obtained from the propagator of the truncated Dyson-Schwinger equations does not reproduced the expected Cornell potential. I show that no formulation based on a finite propagator will lead to confinement of quenched QCD. I propose a mechanism based on a singular nonperturbative coupling constant which has the virtue of giving rise to a finite gluon propagator and (almost) linear confinement. The mechanism can be slightly modified to produce the screened potentials of unquenched QCD.