Search results for "CONTINUOUS-WAVE"

showing 7 items of 7 documents

Pulse EPR methods for studying chemical and biological samples containing transition metals

2006

This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double-resonance (ENDOR), electron-spin-echo envelope-modulation (ESEEM), and double electron-electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model s…

CONTINUOUS-WAVEAnalytical chemistryElectronBiochemistryResonance (particle physics)CatalysisSpectral linelaw.inventionInorganic ChemistryELECTRON-PARAMAGNETIC-RESONANCEchemistry.chemical_compoundTransition metallawDrug DiscoveryPhysical and Theoretical ChemistryElectron paramagnetic resonanceENVELOPE MODULATIONChemistryPulsed EPROrganic ChemistryPorphyrinSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)COENZYME-M-REDUCTASECharacterization (materials science)Chemical physicsRADICAL COMPLEXESSPIN SYSTEMSHELVETICA CHIMICA ACTA
researchProduct

Angle and Height Estimation Technique for Aerial Vehicles using mmWave FMCW Radar

2021

In this article, we present a novel angle and height estimation technique for aerial vehicles using mmWave frequency modulated continuous wave (FMCW) Radar. In the proposed method, Radar’s antennas are oriented vertically to measure the elevation angle of arrival of the aerial vehicle from ground station. Height of the aerial vehicle and horizontal distance of the aerial vehicle from Radar station on ground are estimated using the measured radial range and the elevation angle of arrival.

Computer science010401 analytical chemistryElevation angle020206 networking & telecommunications02 engineering and technology01 natural sciences0104 chemical scienceslaw.inventionComputer Science::RoboticsContinuous-wave radarGround stationRadar antennaslawRange (aeronautics)0202 electrical engineering electronic engineering information engineeringContinuous waveRadarFrequency modulationPhysics::Atmospheric and Oceanic PhysicsRemote sensing2021 International Conference on COMmunication Systems & NETworkS (COMSNETS)
researchProduct

Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires

2013

The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.

PhysicsPhysics and Astronomy (miscellaneous)business.industryDotCondensed Matter::OtherExcitonPhysics::OpticsPurcell effectContinuous-Wave OperationCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductor laser theoryNanocavityOptical pumpingOptoelectronicsSpontaneous emissionStimulated emissionbusinessSpontaneous EmissionLasing thresholdRoom-TemperatureMicrodisk LasersPhotonic crystal
researchProduct

High-overtone bulk acoustic resonator as passive ground penetrating RADAR cooperative targets

2013

International audience; RAdio-frequency Detection And Ranging instruments—RADARs—are widely used for applications aimed at measuring passive target velocity or ranging for various metrology applications such as ground position and localization. Within the context of using piezoelectric acoustic passive sensors as cooperative targets to RADARs probed through a radiofrequency link, this paper reports on investigating the compatibility of narrowband resonator architectures with the classical operation mode of wideband RADAR instruments. Since single mode resonators are hardly compatible due to the limited bandwidth of their spectrum, the investigation has been extended to High-overtone Bulk Ac…

PhysicsPulse-Doppler radarAcousticsGeneral Physics and Astronomy020206 networking & telecommunications02 engineering and technology021001 nanoscience & nanotechnologylaw.inventionPassive radarContinuous-wave radar[SDU] Sciences of the Universe [physics]Frequency combResonatorRadar engineering detailslaw[SDU]Sciences of the Universe [physics]0202 electrical engineering electronic engineering information engineeringClutterRadar0210 nano-technology[ SDU ] Sciences of the Universe [physics]
researchProduct

Localization of Multi-Class On-Road and Aerial Targets Using mmWave FMCW Radar

2021

mmWave radars play a vital role in autonomous systems, such as unmanned aerial vehicles (UAVs), unmanned surface vehicles (USVs), ground station control and monitoring systems. The challenging task when using mmWave radars is to estimate the accurate angle of arrival (AoA) of the targets, due to the limited number of receivers. In this paper, we present a novel AoA estimation technique, using mmWave FMCW radars operating in the frequency range 77–81 GHz by utilizing the mechanical rotation. Rotating the radar also increases the field of view in both azimuth and elevation. The proposed method estimates the AoA of the targets, using only a single transmitter and receiver. The measurements are…

mmWave radarTK7800-8360Computer Networks and CommunicationsComputer scienceangle of arrival (AoA)Field of viewFMCW radarlocalizationlaw.inventionlawAngle of arrivalmulti-class targetsElectrical and Electronic EngineeringRadarVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Remote sensingTransmitterElevationmmWave radar; FMCW radar; localization; multi-class targets; angle of arrival (AoA); azimuth angle; elevation angle; range-angle maps; morphological operators; unmanned aerial vehicle localization; UAV localizationazimuth angleDroneAzimuthContinuous-wave radarHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsElectronics; Volume 10; Issue 23; Pages: 2905
researchProduct

Classification of Targets Using Statistical Features from Range FFT of mmWave FMCW Radars

2021

Radars with mmWave frequency modulated continuous wave (FMCW) technology accurately estimate the range and velocity of targets in their field of view (FoV). The targeted angle of arrival (AoA) estimation can be improved by increasing receiving antennas or by using multiple-input multiple-output (MIMO). However, obtaining target features such as target type remains challenging. In this paper, we present a novel target classification method based on machine learning and features extracted from a range fast Fourier transform (FFT) profile by using mmWave FMCW radars operating in the frequency range of 77–81 GHz. The measurements are carried out in a variety of realistic situations, including p…

mmWave radarrange FFT featuresTK7800-8360Computer Networks and CommunicationsComputer scienceVDP::Technology: 500Fast Fourier transformReal-time computingtargets classificationFMCW radarSupport vector machineContinuous-wave radarStatistical classificationNaive Bayes classifiermachine learningautonomous systemsHardware and ArchitectureControl and Systems EngineeringFeature (computer vision)Angle of arrivalSignal Processingground station radarGradient boostingElectrical and Electronic EngineeringElectronics
researchProduct

Measurement of the soliton number in guiding media through continuum generation.

2020

No general approach is available yet to measure directly the ratio between chromatic dispersion and the nonlinear coefficient, and hence the soliton number for a given optical pulse, in an arbitrary guiding medium. Here we solve this problem using continuum generation. We experimentally demonstrate our method in polarization-maintaining and single-mode fibers with positive and negative chromatic dispersion. Our technique also offers new opportunities to determine the chromatic dispersion of guiding media over a broad spectral range while pumping at a fixed wavelength. (C) 2020 Optical Society of America

optical fiberOptical fiberPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticschromatic dispersionOptics:FÍSICA [UNESCO]law0103 physical sciencesDispersion (optics)supercontinuum generationPhysicsCONTINUOUS-WAVE MEASUREMENT; PHASE-MODULATION METHOD; OPTICAL-FIBERS; SUPERCONTINUUM GENERATION; REFRACTIVE-INDEX; DISPERSION; COEFFICIENT; INTERFEROMETER; NONLINEARITY; COMPRESSIONsoliton propagationContinuum (measurement)business.industrynonlinear opticsUNESCO::FÍSICANonlinear coefficient021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsNonlinear systemWavelengthInterferometry0210 nano-technologybusinessRefractive indexOptics letters
researchProduct