Search results for "COSMOLOGY"

showing 10 items of 2905 documents

A Highly Magnetized Twin-Jet Base Pinpoints a Supermassive Black Hole

2016

Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on Blandford & Znajek extract the rotational energy from a Kerr black hole, which could be the case for NGC1052, to launch these jets. This requires magnetic fields of the order of $10^3\,$G to $10^4\,$G. We imaged the vicinity of the SMBH of the AGN NGC1052 with the Global Millimetre VLBI Array and found a bright and compact central feature, smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~8000…

AstrofísicaCamps magnèticsActive galactic nucleus[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmagnetic fields01 natural sciencesGeneral Relativity and Quantum Cosmology0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeJet (fluid)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusgalaxies: jetsAstrophysics - Astrophysics of GalaxiesMagnetic fieldRotational energyRotating black holeSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiagalaxies: nucleiAstrophysics - High Energy Astrophysical Phenomenagalaxies: magnetic fields[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Schwarzschild radius
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

Induced scalarization in boson stars and scalar gravitational radiation

2012

The dynamical evolution of boson stars in scalar-tensor theories of gravity is considered in the physical (Jordan) frame. We focus on the study of spontaneous and induced scalarization, for which we take as initial data configurations on the well-known S-branch of a single boson star in general relativity. We show that during the scalarization process a strong emission of scalar radiation occurs. The new stable configurations (S-branch) of a single boson star within a particular scalar-tensor theory are also presented.

AstrofísicaCondensed Matter::Quantum GasesPhysicsNuclear and High Energy PhysicsParticle physicsGeneral relativityGravitational waveScalar (mathematics)Scalar theories of gravitationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Scalar bosonGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyNumerical relativityTheoretical physicsScalar fieldAstrophysics::Galaxy AstrophysicsBosonPhysical Review D
researchProduct

Future mmVLBI Research with ALMA: a European vision

2014

Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the intern…

AstrofísicaCosmologiaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic …

2012

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 RAS © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

AstrofísicaCosmology and GravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of Universe[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cosmological parametersFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsEnergia fosca (Astronomia)Astrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Measurement of distancesObservacions astronòmiquesDark energy0103 physical sciencesobservations [Cosmology]Dark energy (Astronomy)010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics/dk/atira/pure/core/subjects/cosmologyDistance scaleCosmologia010308 nuclear & particles physicsCosmology: observationsFísicaAstronomy and AstrophysicsCosmology and Extragalactic AstrophysicsCosmologyMesurament de les distànciesSpace and Planetary Science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsAstronomical observations
researchProduct

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy…

2014

We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately $8\,500$ square degrees and the redshift range $0.2<z<0.7$. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance $\Lambda$CDM cosmological model, the DR11 sample covers a volume of 13\,Gpc${}^3$ and is the largest region of the Universe ever su…

AstrofísicaCosmology and GravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsdistance scaleAstrophysics01 natural sciencesObservacions astronòmiques0103 physical sciencesQB Astronomycosmological parametersdark energy010303 astronomy & astrophysicsQCSTFCAstrophysics::Galaxy AstrophysicsQBPhysics/dk/atira/pure/core/subjects/cosmologyCosmologia010308 nuclear & particles physicsAngular diameter distanceAstrophysics::Instrumentation and Methods for AstrophysicsSpectral densityRCUKAstronomy and AstrophysicsEspectroscòpia de microonesGalaxyRedshiftobservations [cosmology]CosmologyBaryonQC Physics13. Climate actionSpace and Planetary ScienceMicrowave spectroscopyBaryon acoustic oscillationslarge-scale structure of UniverseAstrophysics - Cosmology and Nongalactic AstrophysicsAstronomical observations
researchProduct

Cosmological bounds on neutrino statistics

2018

We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can …

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsNeutrino properties01 natural sciencesPartícules (Física nuclear)symbols.namesakePauli exclusion principleHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesStatisticsAnisotropy010303 astronomy & astrophysicsPhysicsCosmologia010308 nuclear & particles physicsBig bang nucleosynthesisSpectrum (functional analysis)High Energy Physics::PhenomenologyObservableAstronomy and AstrophysicsCosmological neutrinos neutrino properties big bang nucleosynthesis cosmological parameters from CMBRCosmological parameters from CMBRHigh Energy Physics - Phenomenologysymbolsastro-ph.COBig bang nucleosynthesis; Cosmological neutrinos; Cosmological parameters from CMBR; Neutrino properties; astro-ph.CO; astro-ph.CO; High Energy Physics - Phenomenology; Astronomy and AstrophysicsCosmological neutrinosHigh Energy Physics::ExperimentBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Catching the radio flare in CTA 102

2013

We performed multifrequency multiepoch Very Long Baseline Array (VLBA) observations of the blazar CTA 102 during its 2006 radio flare, the strongest ever reported for this source. These observations provide an excellent opportunity to investigate the evolution of the physical properties of blazars, especially during these flaring events. We want to study the kinematic changes in the source during the strong radio outburst in April 2006 and test the assumption of a shock-shock interaction. This assumption is based on the analysis and modeling of the single-dish observations of CTA\,102 (Paper I). In this paper we study the kinematics of CTA 102 at several frequencies using VLBI observations.…

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKinematicsAstrophysics01 natural scienceslaw.inventionlaw0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsVery Long Baseline ArrayHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsViewing angleLight curveCTA-102Space and Planetary ScienceAstronomiaAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsFlareAstronomy &amp; Astrophysics
researchProduct

Non-linear evolution of the cosmic neutrino background

2012

We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) – 10(15) h(-1) M-circle dot, over a redshift range z = 0 – 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino proper…

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark mattercosmological neutrinosFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesMomentumSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesPeculiar velocity010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsneutrino propertiesPhysicsCosmologia010308 nuclear & particles physicsHalo mass functionAstronomy and Astrophysicsneutrino masses from cosmologyRedshiftCosmic neutrino background13. Climate actionHigh Energy Physics::ExperimentHaloNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on dark matter annihilation from CMB observations before Planck

2013

We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV-TeV range annihilating 100% into either an e(+)e(-) or a mu(+)mu(-) pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ( = 3 x 10(-26) cm(3)s(-1)) for DM masses below 30 GeV and 15 GeV for the e(+)e(-) and mu(+)mu(-) channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times…

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPartícules (Física nuclear)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsReionizationPhysicsdark matter theoryCosmologiaAnnihilation010308 nuclear & particles physicsAstronomy and AstrophysicsCMBR theoryRedshiftStarsHigh Energy Physics - PhenomenologysymbolsHalophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct