Search results for "CREEP"
showing 10 items of 167 documents
Recycled Polycarbonate Based Nanocomposites
2013
Post-consumer polycarbonate (RPC) blends with various amounts (5, 10, 30 wt. %) of ethylene vinyl acetate copolymer (EVAc) are investigated as potential nanocomposite matrices. At EVAc weight content of 10 wt.% maximum tensile strength σM and impact strength AI increase is observed in comparison to neat RPC. Addition of EVAc, however, reduces resistance to creep as well as decrease thermal stability of the investigated compositions. Addition of montmorillonite nanoclay (MMT), however, allows increase modulus of elasticity E and yield strength σY of the investigated RPC blend with 10 wt. % of EVAc. Besides it creep resistance and thermal resistance of the investigated system is increased to …
Influence of molecular weight on the creep behavior of undiluted polyisobutylenes
1979
The elongational behavior in constant force experiments has been considered for three samples of commercial polyisobutylene. The results compare favorably with the predictions of two existing non-linear theories as long as the samples deform homogeneously. Some qualitative observations have been made with reference to the “failure point”, i.e., the point where a non-homogeneous deformation begins.
Creep and damage accumulation in orthotropic composites under cyclic loading
1998
Experimental results and theoretical prediction of the response of glassfiber-reinforced polyester under quasi-static, static (creep), and cyclic (fatigue) loading are presented. The nonlinear strain component at static loading and the strain amplitude rate at cyclic off-axis loading of an orthotropic composite are shown to follow the associated flow rule with a single-parameter quadratic potential function. The influence of fatigue damage on deformation is considerable due to the reduction in the elastic modulus of the composite and is apparently negligible with respect to its effect on the parameters of the creep kernel.
Creep response of a LDPE-based nanocomposite
2016
Polymer nanocomposites and their behavior have been widely investigated by several paths, including mechanical, rheological, and permeability tests, finding that several parameters (such as the polymer matrix, the nanofiller, their amounts, the presence of compatibilizers, processing parameters, etc.) can influence the main properties. However, less information is available regarding the creep response of polymer nanocomposites; in particular, few or no data are reported about the combined effect of different loads and different temperatures. In this article, the creep behavior of a low density polyethylene/organomodified clay nanocomposite has been investigated. The characterization of vis…
Photooxidation Behavior of a LDPE/Clay Nanocomposite Monitored through Creep Measurements
2017
Creep behavior of polymer nanocomposites has not been extensively investigated so far, especially when its effects are combined with those due to photooxidation, which are usually studied in completely independent ways. In this work, the photooxidation behavior of a low density polyethylene/organomodified clay nanocomposite system was monitored by measuring the creep curves obtained while subjecting the sample to the combined action of temperature, tensile stress, and UV radiation. The creep curves of the irradiated samples were found to be lower than those of the non-irradiated ones and progressively diverging, because of the formation of branching and cross-linking due to photooxidation. …
Prediction of long-term service performance of polymeric materials from short-term tests: Creep and prediction of the stress shift factor of a longit…
2001
The material studied is a longitudinal polymer liquid crystal (PLC). The creep behavior of the PLC is examined in the region of nonlinear viscoelasticity. The creep compliance D curves at nine different stress (T levels, from 10 to 50 J.cm3 at a constant temperature are determined and shifted along the log time axis for uRf = 10 J . to produce the D versus t/a, master curve. A fairly general formula for stress shift factor a,, based on free volume vf and the chain relaxation capability (CRC) derived by one of the authors is applied. The formula predicts values that agree with the experimental ones within the limits of the experimental accuracy. Thus, experiments at several stress levels can…
Mechanical Properties of High-Density Polyethylene/Chlorinated Polyethylene Blends
2004
Results of experimental investigation of mechanical properties of high-density polyethylene (HDPE)/chlorinated polyethylene (CPE) blends in tension are reported. The specimens of pure HDPE, CPE, and nine types of HDPE/CPE blends, with different component ratios at 10 wt.% intervals, are examined. The features of the stress-strain curves obtained are discussed. Data on the influence of blend composition on the elastic modulus, yield stress, breaking stress, and ultimate elongation are obtained. The results of investigations into the creep behavior are also presented. It is found that the creep compliance obeys the power law of creep with coefficients depending on blend composition.
Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules
2017
Abstract The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only. Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analys…
Elastic-Viscoplastic Solids Subjected to Thermal and Loading Cycles
1995
— A class of elastic-viscoplastic materials with dual internal variables, thermodynamic potential and temperature-dependent plastic and creep data is considered. For solids (or structures) of such materials, subjected to cyclic loads and temperature variations, the existence of a steady-state response is ascertained and its periodicity characteristics established. Particular steady-state responses, like, elastic and inelastic shakedown, are addressed. By means of a sensitivity analysis of the steady cycle with respect to the load parameter changes, a number of basic features of inelastic shakedown (the viscoplastic counterpart of plastic shakedown) are also addressed.
2020
Abstract. Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to differential expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual pressure and provides information on the entrapment temperature and pressure conditions. However, the amount of residual pressure relaxation cannot be directly measured. An underestimation or overestimation of residual pressure may lead to significant errors between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible for the residual pressure modification: (1) viscous creep; (2) plastic yield; (3) proximity of inclusion …