Search results for "CRYSTAL-STRUCTURES"

showing 10 items of 18 documents

Characterization of Flux-Grown SmxNd1–xVO4 Compounds and High-Pressure Behavior for x = 0.5

2019

The crystal structure and the vibrational and optical characteristics of flux-grown mixed lanthanide vanadate compounds SmxNd1–xVO4 (x = 0, 0.1, 0.25, 0.5, 0.75 and 1) are reported. A linear, monot...

LanthanideMaterials scienceAnalytical chemistryPHONON02 engineering and technologyCrystal structure010402 general chemistryPRVO401 natural sciencesRAMANX-RAY-DIFFRACTIONLATTICE-DYNAMICSCONTRACTIONSPECTRAVanadateEFFECTIVE IONIC-RADIICRYSTAL-STRUCTURESPhysical and Theoretical Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCharacterization (materials science)X-RAY-DIFFRACTION; EFFECTIVE IONIC-RADII; CRYSTAL-STRUCTURES; LATTICE-DYNAMICS; ENERGY-TRANSFER; RAMAN; PHONON; CONTRACTION; SPECTRA; PRVO4General EnergyHigh pressure0210 nano-technologyENERGY-TRANSFERFlux (metabolism)
researchProduct

Cation Environment of BaCeO3−Based Protonic Conductors II: New Computational Models

2011

Quantum chemical calculations have been carried out to simulate Y-doped BaCeO(3) derivatives. Hartree-Fock energy functional was used to study octahedral site environments embedded in a Pmcn orthorhombic framework, showing local arrangement characterized by Ce-O-Ce, Ce-O-Y, and Y-O-Y (Z-O-Ξ) configurations and including or not hydrogen close to the moieties encompassing those configurations. The latter are, in fact, representative of - and, in our modeling approach, were treated as - local arrangements that could be found in Y:BaCeO(3)-doped materials. The geometrical optimizations performed on the structural models and a detailed orbital analysis of these systems allowed us to confirm and …

Phase transitionExtended X-ray absorption fine structureHydrogenShell (structure)2ND-ROW ELEMENTSchemistry.chemical_elementDOPED BARIUM CERATECrystal structureEXTENDED BASIS-SETSRELATIVISTIC EFFECTIVE POTENTIALSSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)MOLECULAR-ORBITAL METHODSchemistryOctahedronSettore CHIM/03 - Chimica Generale E InorganicaComputational chemistryChemical physicsPEROVSKITE OXIDESCRYSTAL-STRUCTURESPHASE-TRANSITIONSOrthorhombic crystal systemAB-INITIO PSEUDOPOTENTIALSPhysical and Theoretical ChemistryVALENCE BASIS-SETSEnergy functionalThe Journal of Physical Chemistry A
researchProduct

Prussian Blue Analogues of Reduced Dimensionality

2012

Abstract: Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is …

LANGMUIR-BLODGETT-FILMSMaterials scienceSpin glassORDERING TEMPERATUREsingle-chain magnetsNanotechnologyiron(ii) complex02 engineering and technologyCrystal structure010402 general chemistrySINGLE-CHAIN MAGNETSlangmuir-blodgett-films01 natural sciencesThermal expansionBiomaterialsCrystalchemistry.chemical_compoundPHOTOINDUCED MAGNETIZATIONTHIN-FILMSDEGREES-Cphotoinduced magnetizationMoleculeGeneral Materials ScienceCRYSTAL-STRUCTURESThin filmPrussian bluePhysicsGeneral Chemistry021001 nanoscience & nanotechnologyIRON(II) COMPLEX0104 chemical sciencesHYBRID FILMSordering temperaturesquare grid networkChemistrychemistryFerromagnetismSQUARE GRID NETWORKthin-filmshybrid filmsdegrees-c0210 nano-technologyEngineering sciences. Technologycrystal-structuresBiotechnologySmall
researchProduct

Alkane oxidation by a carboxylate-bridged dimanganese(III) complex

2001

[EN] A new manganese( III) oxamato dimer possesing an unprecedented Mn-2(mu -O2CR)(mu -OH2. . .O2CR) core has been synthesised, structurally and magnetically characterised, and used as a catalyst for the oxidation of alkanes to alcohols and ketones by (BuO2H)-O-t and O-2 in CH2Cl2 at rt.

Crystal-structuresUNESCO::QUÍMICA:QUÍMICA::Química orgánica [UNESCO]Escherichia-coliKetones:QUÍMICA [UNESCO]Manganese oxamatoDimerCarboxylate-bridged dimanganese complexFISICA APLICADAOxidationAlkanesManganese(iii)UNESCO::QUÍMICA::Química orgánicaCoreOxidation ; Carboxylate-bridged dimanganese complex ; Manganese oxamato ; Alkanes ; KetonesRibonucleotide reductaseMagnetic-properties
researchProduct

Inclusion complexes of Cethyl-2-methylresorcinarene and pyridine N-oxides: breaking the C–I⋯−O–N+ halogen bond by host–guest complexation

2016

C ethyl-2-Methylresorcinarene forms host–guest complexes with aromatic N-oxides through multiple intra- and intermolecular hydrogen bonds and C–H⋯π interactions. The host shows conformational flexibility to accommodate 3-methylpyridine N-oxide, while retaining a crown conformation for 2-methyl- and 4-methoxypyridine N-oxides highlighting the substituent effect of the guest. N-Methylmorpholine N-oxide, a 6-membered ring aliphatic N-oxide with a methyl at the N-oxide nitrogen, is bound by the equatorial −N–CH3 group located deep in the cavity. 2-Iodopyridine N-oxide is the only guest that manifests intermolecular N–O⋯I–C halogen bond interactions, which are broken down by the host resulting i…

StereochemistrySubstituentmacromolecular substancesCrystal structure010402 general chemistryRing (chemistry)01 natural sciencespyridine N-oxideschemistry.chemical_compoundPyridineWATERGeneral Materials ScienceCRYSTAL-STRUCTURESta116Cethyl-2-methylresorcinareneCOORDINATIONHalogen bondPACKINGta114010405 organic chemistryHydrogen bondIntermolecular forceRECOGNITIONGeneral ChemistryETHYL RESORCINARENECondensed Matter PhysicsMETHYLRESORCINARENE0104 chemical sciencesCrystallographySOLID-STATEchemistryhost–guest complexationMETALMOLECULAR CAPSULEShalogen bondSingle crystalCrystEngComm
researchProduct

1,2-Bis(methylsulfanyl)-1,2-dicarba-closo-dodecaborane(12)

2004

3 pages, 1 figure, 2 tables

Crystal-structures010405 organic chemistryStereochemistryHETEROBORANESBoranesGeneral MedicineCrystal structureBoraneDihedral angle010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology3. Good health0104 chemical scienceschemistry.chemical_compoundCAGESchemistryCarboraneMoleculeCageMOLECULAR-STRUCTURECarborane
researchProduct

Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 <x <5)

2017

Thermoelectric materials are believed to play a fundamental role in the energy field over the next years thanks to their ability of directly converting heat into usable electric energy. To increase their integration in the commercial markets, improvements of the efficiencies are needed. At the same time, cheap and non-toxic materials are required along with easily upscalable production cycles. Compounds of the tetragonal tungsten bronze (TTB) series Nb8-xW9+xO47 fulfill all these requirements and are promising materials. Their adaptive structure ensures glass-like values of the thermal conductivity, and the substitution on the cation side allows a controlled manipulation of the electronic p…

Materials scienceEQUILIBRIATITANIUM-OXYGEN SYSTEMCRYSTALLOGRAPHIC SHEARchemistry.chemical_elementNanotechnology02 engineering and technologyTemperature cyclingThermal treatmentTungsten010402 general chemistry01 natural sciencesTHERMOPOWERPHYSICSTetragonal crystal systemThermal conductivityThermoelectric effectMETAL-OXIDESGeneral Materials ScienceThermal stabilityCRYSTAL-STRUCTURESRenewable Energy Sustainability and the EnvironmentMOLYBDENUMGeneral ChemistryPERFORMANCE021001 nanoscience & nanotechnologyThermoelectric materials0104 chemical sciencesChemical engineeringchemistry0210 nano-technologyPB
researchProduct

Synthesis, UV/vis, FT-IR and Mössbauer spectroscopic characterization and molecular structure of the Bis[4-(2-aminoethyl)morpholine](tetrakis(4-metox…

2016

International audience; The synthesis, the UV-visible, FT-IR and Mossbauer spectroscopy and the crystal structure characterizations of the bis[4-(2-Aminoethyl)morpholine]tetrakis(4-metoxyphenyl)porphy-rinato)iron(II) complex are described. The title compound crystallizes in the triclinic, space group P-1, with a = 11.1253(4) angstrom, b = 11.2379(4) angstrom, c = 11.5488(4) angstrom, alpha = 72.304(2)degrees, beta = 86.002(2)degrees gamma = 72.066(2)degrees, V = 1308.28(8) angstrom(3), Z = 1. The Mossbauer data are consistent with an iron(II) low-spin (S = 0) porphyin species. The spin-state is confirmed by the value of the average equatorial iron-nitrogen pyrrole distance (Fe-Np = 1.988(2)…

Supramolecular chemistry02 engineering and technologyCrystal structureTriclinic crystal system010402 general chemistryspin01 natural sciencesUV-visible[ CHIM ] Chemical SciencesAnalytical ChemistryInorganic ChemistryMossbauerchemistry.chemical_compoundMorpholineMössbauer spectroscopy[CHIM]Chemical SciencesSpectroscopyPyrroleHydrogen bondOrganic Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesX-ray diffractionCrystallographychemistryIron porphyrin complexX-ray crystallography0210 nano-technologycrystal-structures
researchProduct

Ligand-Based Charge-Transfer Luminescence in Ionic Cyclometalated Iridium(III) Complexes Bearing a Pyrene-Functionalized Bipyridine Ligand: A Joint T…

2012

Two new heteroleptic iridium(III) complexes [Ir(ppy)(2)(pyr(2)bpy)][PF(6)] ([1a][PF(6)]) and [Ir(dfppy)(2)(pyr(2)bpy)][PF(6)] ([2a][PF(6)]), where Hppy = 2-phenylpyridine, Hdfppy = 2-(3,5-difluorophenyl)pyridine, and pyr(2)bpy = 5,5'-bis(pyren-1-yl)-2,2'-bipyridine, have been synthesized and fully characterized. The single-crystal structures of pyr(2)bpy and the complexes 4{[1a][PF(6)]}·2CH(2)Cl(2)·9H(2)O and [2a][PF(6)]·0.25CH(2)Cl(2)·H(2)O have been determined. The effect of the pyrene substituents on the electronic properties is investigated through a comprehensive photophysical and theoretical study on the two complexes in comparison to reference complexes without substituents on the an…

ELECTROLUMINESCENT DEVICESAbsorption spectroscopyEMITTING ELECTROCHEMICAL-CELLSchemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesInorganic ChemistryBipyridinechemistry.chemical_compoundPyridineCRYSTAL-STRUCTURESIridiumPhysical and Theoretical ChemistryCHELATED RUTHENIUM(II) COMPLEXEXACT-EXCHANGEChemistryLigand021001 nanoscience & nanotechnologyTRANSITION-METAL-COMPLEXES0104 chemical sciences3. Good healthCrystallographyPHOTOPHYSICAL PROPERTIESQUANTUM YIELDSIntramolecular forcePyreneEXCITED-STATE PROPERTIESSENSITIZED SOLAR-CELLS0210 nano-technologyLuminescenceInorg. Chem.
researchProduct

Infinite coordination polymer networks metallogelation of aminopyridine conjugates and in situ silver nanoparticle formation

2018

Herein we report silver(i) directed infinite coordination polymer network (ICPN) induced self-assembly of low molecular weight organic ligands leading to metallogelation. Structurally simple ligands are derived from 3-aminopyridine and 4-aminopyridine conjugates which are composed of either pyridine or 2,2'-bipyridine cores. The cation specific gelation was found to be independent of the counter anion, leading to highly entangled fibrillar networks facilitating the immobilization of solvent molecules. Rheological studies revealed that the elastic storage modulus (G') of a given gelator molecule is counter anion dependent. The metallogels derived from ligands containing a bipyridine core dis…

STABILIZATIONSilverCoordination polymerNanoparticleMetal Nanoparticles02 engineering and technologyorganometalliyhdisteet010402 general chemistry01 natural sciencesSilver nanoparticlePolymerizationchemistry.chemical_compoundBipyridinePyridineorganometallic compoundsMoleculePARTICLESCRYSTAL-STRUCTURES4-Aminopyridinepolymeeritta116GELSpolymersgeelitHYBRID MATERIALSta114General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsGELATION0104 chemical sciencesCrystallographyREDUCTIONCross-Linking ReagentschemistryPolymerizationMETALLUMINESCENCEPHASE-TRANSITIONCoordination polymerizationnanohiukkasetnanoparticles0210 nano-technologyRheologySOFT MATTER
researchProduct