Search results for "Cajal"

showing 6 items of 16 documents

The young Ramón y Cajal as a cell-theory dissenter

2008

Pereto Magraner, Juli, Juli.Pereto@uv.es

Neuron doctrineCell theoryProtoplasmic insightsRamon y Cajal:CIENCIAS DE LA VIDA::Biología celular [UNESCO]UNESCO::CIENCIAS DE LA VIDARamon y Cajal ; Neuron doctrine ; Cell theory ; Protoplasmic insightsUNESCO::CIENCIAS DE LA VIDA::Biología celular:CIENCIAS DE LA VIDA [UNESCO]
researchProduct

Ultrastructural changes in the interstitial cells of Cajal and gastric dysrhythmias in mice lacking full-length dystrophin (mdxmice)

2003

At least two populations of c-kit positive interstitial cells of Cajal (ICC) lie in the gastric wall, one located at the myenteric plexus level has a pace-making function and the other located intramuscularly is intermediary in the neurotransmission and regenerates the slow waves. Both of these ICC sub-types express full-length dystrophin. Mdx mice, an animal model lacking in full-length dystrophin and used to study Duchenne muscular dystrophy (DMD), show gastric dismotilities. The aim of the present study was to verify in mdx mice whether: (i) gastric ICC undergo morphological changes, through immunohistochemical and ultrastructural analyses; and (ii) there are alterations in the electrica…

Pathologymedicine.medical_specialtyPhysiologyDuchenne muscular dystrophyEndoplasmic reticulumClinical BiochemistryCoated vesicleCell BiologyAnatomyBiologymedicine.diseaseInterstitial cell of Cajalsymbols.namesakeCaveolaemedicinesymbolsbiology.proteinImmunohistochemistryDystrophinMyenteric plexusJournal of Cellular Physiology
researchProduct

SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes

2021

Abstract Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofact…

ProteomicsAcademicSubjects/SCI00010Ribonucleoprotein U4-U6 Small NuclearSF3B1 GeneMass Spectrometry0302 clinical medicineRNA Small NuclearRNA PrecursorsIn Situ Hybridization FluorescenceRibonucleoprotein0303 health sciencesChemistryRibonucleoproteins Small NuclearImmunohistochemistryCell biologyDNA-Binding Proteinsmedicine.anatomical_structureGene Knockdown TechniquesRNA splicingRNA Splicing FactorsUsher SyndromesSpliceosomeCoiled BodiesNerve Tissue ProteinsBiologyMinor Histocompatibility Antigens03 medical and health sciencesMicroscopy Electron TransmissionRNA and RNA-protein complexesGeneticsmedicineHumanssnRNPEye ProteinsGeneCell Proliferation030304 developmental biologyCell NucleusRNAmedicine.diseasePhosphoproteinsCiliopathyAlternative SplicingCell nucleusHEK293 CellsCajal bodyCytoplasmSpliceosomesNucleus030217 neurology & neurosurgeryTranscription FactorsNucleic Acids Research
researchProduct

The multiple facets of Cajal-Retzius neurons.

2021

ABSTRACTCajal-Retzius neurons (CRs) are among the first-born neurons in the developing cortex of reptiles, birds and mammals, including humans. The peculiarity of CRs lies in the fact they are initially embedded into the immature neuronal network before being almost completely eliminated by cell death at the end of cortical development. CRs are best known for controlling the migration of glutamatergic neurons and the formation of cortical layers through the secretion of the glycoprotein reelin. However, they have been shown to play numerous additional key roles at many steps of cortical development, spanning from patterning and sizing functional areas to synaptogenesis. The use of genetic l…

[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyCell Adhesion Molecules NeuronalNeurogenesisSynaptogenesisHippocampusNerve Tissue Proteins[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]BiologyDevelopmentMolecular heterogeneityHippocampusCajal-Retzius neurons03 medical and health sciencesGlutamatergicMolecular profiling0302 clinical medicineCortex (anatomy)[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]Biological neural networkmedicineotorhinolaryngologic diseasesAnimalsHumansReelinMolecular Biology030304 developmental biologyCerebral CortexNeurons0303 health sciencesExtracellular Matrix ProteinsCell DeathSerine Endopeptidases[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.BDD.EO] Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisReelin Proteinmedicine.anatomical_structure[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesisbiology.proteinCortexIdentification (biology)TranscriptomeNeuroscience030217 neurology & neurosurgerySingle-cell transcriptomicsDevelopmental BiologyDevelopment (Cambridge, England)
researchProduct

GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility

2011

Background  Glucagon-like peptide 2 (GLP-2), a nutrient-responsive hormone, exerts various actions in the gastrointestinal tract that are mediated by a G-protein coupled receptor called GLP-2R. A little information is available on GLP-2R expression in enteric neurons and nothing on the interstitial cells of Cajal (ICC). Methods  We investigated presence and distribution of the GLP-2R in the mouse duodenum by immunohistochemistry and the potential motor effects of GLP-2 on the spontaneous and neurally evoked mechanical activity. Key Results  The GLP-2R was expressed by the myenteric and submucosal neurons. Labelling was also present in nerve varicosities within the circular muscular layer an…

endocrine systemmedicine.medical_specialtyEndocrine and Autonomic SystemsPhysiologyReceptor expressiondigestive oral and skin physiologyVasoactive intestinal peptideGastroenterologyBiologyInhibitory postsynaptic potentialInterstitial cell of Cajalsymbols.namesakeExcitatory synapseEndocrinologyInternal medicinemedicineExcitatory postsynaptic potentialsymbolsCholinergichormones hormone substitutes and hormone antagonistsMyenteric plexusNeurogastroenterology & Motility
researchProduct

Murine genetic deficiency of neuronal nitric oxide synthase (nNOS-/-) and interstitial cells of Cajal (W/Wv): Implications for achalasia?

2014

Background and aim Nitric oxide (NO) is an important inhibitory mediator of esophageal function, and its lack leads to typical features of achalasia. In contrast, the role of intramuscular interstitial cells of Cajal (ICC-IM) and vasoactive intestinal peptide (VIP) in lower esophageal sphincter (LES) function is still controversial. Therefore, we examined the function and morphology of the LES in vivo in NO-deficient (nNOS(-/-) ), ICC-IM-deficient (W/W(v) )-, and wild-type (WT) mice. Methods Esophageal manometry was performed with a micro-sized transducer catheter to quantify LES pressure, swallow evoked LES relaxation, and esophageal body motility. The LES morphology was examined by semiqu…

medicine.medical_specialtyHepatologybusiness.industryVasoactive intestinal peptideGastroenterologyMotilityAchalasiaInhibitory postsynaptic potentialmedicine.diseaseNitric oxideInterstitial cell of Cajalchemistry.chemical_compoundsymbols.namesakeEndocrinologychemistryIn vivoInternal medicineotorhinolaryngologic diseasesmedicinesymbolsbusinessNeuronal Nitric Oxide SynthaseJournal of Gastroenterology and Hepatology
researchProduct