Search results for "Calabi-Yau"

showing 9 items of 9 documents

New fourfolds from F-theory

2015

In this paper, we apply Borcea-Voisin's construction and give new examples of fourfolds containing a del Pezzo surface of degree six, which admit an elliptic fibration on a smooth threefold. Some of these fourfolds are Calabi-Yau varieties, which are relevant for the $N=1$ compactification of Type IIB string theory known as $F$-Theory. As a by-product, we provide a new example of a Calabi--Yau threefold with Hodge numbers $h^{1,1}=h^{2,1}=10$.

14J50F-theory14J32del Pezzo surface14J32; 14J35; 14J50; Calabi-Yau manifolds; Del Pezzo surfaces; Elliptic fibration; F-theory; Mathematics (all)Calabi-Yau manifoldMathematics - Algebraic GeometryCalabi-Yau manifoldsFOS: MathematicsMathematics (all)14J35Settore MAT/03 - Geometriaelliptic fibrationDel Pezzo surfaces14J32 14J35 14J50Algebraic Geometry (math.AG)
researchProduct

Groups acting freely on Calabi-Yau threefolds embedded in a product of del Pezzo surfaces

2011

In this paper, we investigate quotients of Calabi-Yau manifolds $Y$ embedded in Fano varieties $X$, which are products of two del Pezzo surfaces — with respect to groups $G$ that act freely on $Y$. In particular, we revisit some known examples and we obtain some new Calabi-Yau varieties with small Hodge numbers. The groups $G$ are subgroups of the automorphism groups of $X$, which is described in terms of the automorphism group of the two del Pezzo surfaces.

Automorphism groupPure mathematicsGeneral MathematicsGeneral Physics and AstronomyFOS: Physical sciencesFano planeMathematical Physics (math-ph)AutomorphismMathematics - Algebraic GeometryMathematics::Algebraic GeometryProduct (mathematics)FOS: MathematicsCalabi–Yau manifolddel pezzo calabi yauSettore MAT/03 - GeometriaMathematics::Differential GeometryGrupo actions Calabi-Yau threefolds hodge numbersAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryQuotientMathematical PhysicsMathematics
researchProduct

New examples of Calabi-Yau threefolds and genus zero surfaces

2012

We classify the subgroups of the automorphism group of the product of 4 projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi-Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is non-trivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K^2=3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.

Mathematics - Algebraic GeometryMathematics::Algebraic GeometryCalabi-Yau manifoldsalgebraic surface14J29 14J32FOS: MathematicsSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)
researchProduct

Diffeomorphism classes of Calabi-Yau varieties

2016

In this article we investigate diffeomorphism classes of Calabi-Yau threefolds. In particular, we focus on those embedded in toric Fano manifolds. Along the way, we give various examples and conclude with a curious remark regarding mirror symmetry.

Mathematics - Differential Geometry14J32 14J45Mathematics - Algebraic GeometryMathematics::Algebraic GeometryDifferential Geometry (math.DG)FOS: MathematicsSettore MAT/03 - GeometriaMathematics::Differential GeometryAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryCalabi-Yau diffeomorphism
researchProduct

Some Remarks on Calabi-Yau Manifolds

2010

Here we focus on the geometry of the “mirror quintic” Y and its generalizations. In particular, we illustrate how to obtain new birational models of Y . The article under review can be regarded as an announcement of or supplement to results in forthcoming papers of the author and his collaborators concerning quintic threefolds, the Dwork pencil, and its natural generalization to higher dimensions [G. Bini, “Quotients of hypersurfaces in weighted projective space”, preprint, arxiv.org/ abs/0905.2099, Adv. Geom., to appear; G. Bini, B. van Geemen and T. L. Kelly, “Mirror quintics, discrete symmetries and Shioda maps”, preprint, arxiv.org/abs/0809. 1791, J. Algebraic Geom., to appear; G. Bini …

Mathematics::Algebraic GeometryQA1-939calabi-yau manifoldsCalabi-Yau coomologia orbifoldSettore MAT/03 - Geometriaorbifold cohomologyNonlinear Sciences::Pattern Formation and SolitonsMathematics
researchProduct

A closer look at mirrors and quotients of Calabi-Yau threefolds

2016

Let X be the toric variety (P1)4 associated with its four-dimensional polytope 1. Denote by X˜ the resolution of the singular Fano variety Xo associated with the dual polytope 1o. Generically, anticanonical sections Y of X and anticanonical sections Y˜ of X˜ are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient Z˜ associated to an admissible pair in X˜ . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable Y˜. Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we star…

Pure mathematics010308 nuclear & particles physics010102 general mathematicsToric varietyPolytopeFano varietymirror symmetry01 natural sciencesTheoretical Computer ScienceMathematics::Algebraic GeometryMathematics (miscellaneous)0103 physical sciencesCalabi-YauCrepant resolutionCalabi–Yau manifoldMirror Symmetry Calabi-Yau QuotientsSettore MAT/03 - Geometria0101 mathematicsMathematics::Symplectic GeometryQuotientOrbifoldMAT/03 - GEOMETRIAMathematicsResolution (algebra)
researchProduct

Modular Calabi-Yau threefolds of level eight

2005

In the studies on the modularity conjecture for rigid Calabi-Yau threefolds several examples with the unique level 8 cusp form were constructed. According to the Tate Conjecture correspondences inducing isomorphisms on the middle cohomologies should exist between these varieties. In the paper we construct several examples of such correspondences. In the constructions elliptic fibrations play a crucial role. In fact we show that all but three examples are in some sense built upon two modular curves from the Beauville list.

Pure mathematicsConjectureMathematics - Number Theory14G1014J32General MathematicsModular formModular invariancemodular forms14G10; 14J32Cusp formModular curveAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryModular elliptic curveCalabi-YauFOS: MathematicsCalabi–Yau manifoldNumber Theory (math.NT)Tate conjectureAlgebraic Geometry (math.AG)MathematicsTate conjecturedouble coverings
researchProduct

Deformations of Calabi-Yau manifolds in Fano toric varieties

2020

In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.

Pure mathematicsGeneral MathematicsInfinitesimalFano plane01 natural sciencesMathematics - Algebraic GeometryMorphismMathematics::Algebraic GeometryMathematics::Category TheoryFOS: MathematicsCalabi–Yau manifold0101 mathematicsMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)ComputingMethodologies_COMPUTERGRAPHICSMathematicsFunctorComputer Science::Information Retrieval010102 general mathematicsToric varietyFano toric varieties · Calabi-Yau manifolds · Deformations of subvarietiesManifold010101 applied mathematicsHilbert scheme14J32 14J45 32G10Settore MAT/03 - GeometriaMathematics::Differential Geometry
researchProduct

An unbounded family of log Calabi–Yau pairs

2016

We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.

geography of threefoldSequenceDegree (graph theory)Projective bundleGeneral Mathematics14J30 14J32 14J60CombinatoricsMathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometryprojective bundlesIntegerEuler characteristicLog Calabi-Yau pairFOS: MathematicssymbolsCalabi–Yau manifoldSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMAT/03 - GEOMETRIAMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct