Search results for "Calculation"

showing 10 items of 594 documents

Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

2011

Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 A and rSi-S = 1.9133 A) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected fi…

PhysicsOSiSequilibrium structureSiliconrotational spectrumTriatomic moleculeExtrapolationchemistry.chemical_elementMolecular physicsPartial chargesymbols.namesakeFourier transformchemistryAdditive functionsymbolsPhysical chemistryGeneral Materials ScienceRotational spectroscopyPhysical and Theoretical ChemistrySpectral resolutionquantum chemical calculationComputer Science::Cryptography and SecurityThe journal of physical chemistry letters
researchProduct

Update on the b→s anomalies

2019

We present a brief update of our model-independent analyses of the b->s data presented in the articles published in Phys. Rev. D96 (2017) 095034 and Phys. Rev. D98 (2018) 095027 based on new data on R_K by LHCb, on R_{K^*} by Belle, and on B_{s,d}-> mu^+ mu^- by ATLAS.

PhysicsParticle physicsB: semileptonic decay010308 nuclear & particles physicsWilsonlepton: flavor: violationBELLEbranching ratio: ratioATLASLHC-B01 natural sciencesHigh Energy Physics - PhenomenologyBeyond the standard modelstatistical analysis[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical scienceslepton: universality: violationStatistical analysisB: branching rationumerical calculations010306 general physicsPhysical Review D
researchProduct

Method specific Cholesky decomposition : Coulomb and exchange energies

2008

We present a novel approach to the calculation of the Coulomb and exchange contributions to the total electronic energy in self consistent field and density functional theory. The numerical procedure is based on the Cholesky decomposition and involves decomposition of specific Hadamard product matrices that enter the energy expression. In this way, we determine an auxiliary basis and obtain a dramatic reduction in size as compared to the resolution of identity (RI) method. Although the auxiliary basis is determined from the energy expression, we have complete control of the errors in the gradient or Fock matrix. Another important advantage of this method specific Cholesky decomposition is t…

PhysicsPotential energy functionsBasis (linear algebra)General Physics and AstronomyMinimum degree algorithmUNESCO::FÍSICA::Química físicaPhysics and Astronomy (all)Computational chemistryFock matrixDensity functional theoryHadamard productApplied mathematicsSCF calculationsDensity functional theoryDensity functional theory ; Hadamard matrices ; Potential energy functions ; SCF calculationsHadamard matricesPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]ScalingCholesky decompositionSparse matrix
researchProduct

The rotational spectrum of 17O2 up to the THz region

2016

Abstract The investigation of the pure rotational spectrum of the 17O2 isotopic species of molecular oxygen has been extended with respect to previous investigations to the submillimeter-wave region, from 230 GHz up to 1.06 THz. The resulting spectroscopic parameters, which have an accuracy comparable to that of the constants obtained from an updated isotopic invariant fit involving data for three electronic states and six isotopologues [Yu et al. High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, bandconstants, RKR potentials, Franck–Condon factors involving the X 3 Σ g − , a 1 Δ g , and b 1 Σ g + states. J Chem Phys 2014;141:174302/1–12], permit the prediction…

PhysicsQuantum-chemical calculationAtomic and Molecular Physics and OpticRadiation010304 chemical physicsTerahertz radiationRadiationRotational and hyperfine parameter010402 general chemistry01 natural sciencesAtomic and Molecular Physics and OpticsRotational spectrum0104 chemical sciences17O2 isotopologue0103 physical sciencesPartition (number theory)IsotopologueAtomic physicsInvariant (mathematics)Constant (mathematics)SpectroscopyHyperfine structureSpectroscopyJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

A generic high-dose rate192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

2015

Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-b ...

PhysicsTask groupmedicine.medical_specialtyDose calculationmedicine.medical_treatmentBrachytherapyGeneral MedicineBrachytherapy sourceComputational physicsFormalism (philosophy of mathematics)Medical imagingmedicineDosimetryMedical physicsDose rateMedical Physics
researchProduct

New density-independent interactions for nuclear structure calculations

2013

We present a new two-body finite-range and momentum-dependent but density-independent effective interaction, which can be interpreted as a regularized zero-range force. We show that no three-body or density-dependent terms are needed for a correct description of saturation properties in infinite matter, that is, on the level of low-energy density functional, the physical three-body effects can be efficiently absorbed in effective two-body terms. The new interaction gives a very satisfying equation of state of nuclear matter and opens up extremely interesting perspectives for the mean-field and beyond-mean-field descriptions of atomic nuclei.

Physicsnuclear structure calculationsta114[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryPhysicsQC1-999Nuclear structureFOS: Physical sciencesDensity independentNuclear matterNuclear Theory (nucl-th)Quantum electrodynamicsAtomic nucleusSaturation (chemistry)density-independent interactionsEPJ Web of Conferences
researchProduct

Use of site symmetry in supercell models of defective crystals: Polarons in CeO2

2017

The authors thank R. Merkle and G. W. Watson for stimulating discussions. E. K. also acknowledges partial financial support from the Russian Science Foundation for the study of charged defects under the project 14-43-00052. A. C. also acknowledges financial support from the University of Latvia Foundation (Arnis Riekstins's "MikroTik" donation). E. K. and D. G. express their gratitude to the High Performance Computer Centre in Stuttgart (HLRS, project DEFTD 12939) for the provided computer facilities whereas R. A. E. thanks the St. Petersburg State University Computer Center for assistance in high-performance calculations.

PhysicspolaronCondensed matter physicssite symmetryGeneral Physics and Astronomy02 engineering and technologyoxygen vacancy021001 nanoscience & nanotechnologyPolaron01 natural sciencesCrystallographic defectSymmetry (physics)Condensed Matter::Materials SciencePerfect crystalLinear combination of atomic orbitalsPosition (vector)Vacancy defect0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Wyckoff positionsPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyfirst principles calculationsCeO2
researchProduct

Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

2018

With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or sc…

Physics::Instrumentation and DetectorsAstronomyengineering01 natural sciencesultra high energy cosmic rayAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic ray experiments; cosmic rays detectors; ultra high energy cosmic rays; Astronomy and Astrophysics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cosmic ray experiments cosmic rays detectors ultra high energy cosmic rays Astronomy and Astrophysics.Absorption (electromagnetic radiation)Physicsradio waveSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETORESCOSMIC-RAYSAugerobservatoryAmplitudecosmic rays detectorsAstrophysics - Instrumentation and Methods for Astrophysicsnumerical calculations: Monte CarloairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentultra high energy cosmic rayscascade: electromagneticOptics0103 physical sciencesHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic rays detector010306 general physicscosmic ray experiments cosmic rays detectors ultra high energy cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithAstrophysiquePierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryScatteringhep-exdetector: surfacescatteringAstronomy and AstrophysicsAstronomieAir showerExperimental High Energy PhysicsARRAYHigh Energy Physics::Experimentcosmic ray experimentscosmic ray experiments; cosmic rays detectors; ultra high energy cosmic raysEMISSIONbusinessabsorptionastro-ph.IM
researchProduct

A neural network clustering algorithm for the ATLAS silicon pixel detector

2014

A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. …

Physics::Instrumentation and DetectorsCiencias FísicasMonte Carlo methodHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)jetParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]Statistical physicscluster [track data analysis]Particle tracking detectors (solid-state detectors)InstrumentationQCMathematical PhysicsPhysicsArtificial neural networkAtlas (topology)Detectordetectors)Monte Carlo [numerical calculations]ATLASperformance [neural network]CERN LHC CollParticle tracking detectors (Solid-state detectors)Feature (computer vision)Physical SciencesParticle tracking detectors (Solid-stateParticle tracking detectors; Particle tracking detectors (Solid-state detectors)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCConnected-component labelingAlgorithmNeural networksCIENCIAS NATURALES Y EXACTASParticle Physics - ExperimentInterpolationCiências Naturais::Ciências Físicas530 Physicssplitting:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesParticle tracking detectors; Particle tracking detectors (solid-state detectors); Instrumentation; Mathematical Physics530FysikHigh Energy Physicsddc:610Cluster analysispixel [semiconductor detector]Science & TechnologyFísica//purl.org/becyt/ford/1.3 [https]High Energy Physics - Experiment; High Energy Physics - ExperimentParticle tracking detectorcluster [charged particle]AstronomíaParticle tracking detectors; Particle tracking detectors (Solid-state; detectors)Experimental High Energy Physicsimpact parameter [resolution]
researchProduct

Long-lived particles at the energy frontier: the MATHUSLA physics case

2019

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …

Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelHEAVY MAJORANA NEUTRINOSGeneral Physics and Astronomy01 natural sciencesMathematical SciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NaturalnessCERN LHC Coll: upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: masslong-lived particlesPhysicsLarge Hadron Collidernew physicsCMShierarchy problemneutrinosHierarchy problemhep-phATLASDARK-MATTER SEARCHESCOSMIC-RAYSmissing-energyHigh Energy Physics - PhenomenologyLarge Hadron ColliderPhysical SciencesNeutrinoLIGHT HIGGS-BOSONParticle Physics - ExperimentParticle physicsGeneral PhysicsSTERILE NEUTRINOSPHI-MESON DECAYSnucleosynthesis: big bangDark matterFOS: Physical sciencesEXTENSIVE AIR-SHOWERSdark matterVECTOR GAUGE BOSON0103 physical sciences010306 general physicsnumerical calculationsParticle Physics - PhenomenologyLEFT-RIGHT SYMMETRYMissing energyhep-exbackgroundBaryogenesisdark matter: detectortriggersensitivityBaryogenesis[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]simplified modelsDOUBLE-BETA DECAYparticle: long-lived
researchProduct