Search results for "Calculation"
showing 10 items of 594 documents
The SO2F2 quasi-spherical top: Correspondence between tensorial and Watson's formalisms
2006
Abstract The SO2F2 quasi-spherical top molecule with C2v symmetry is considered as a distorted spherical top deriving from the SO 4 2 − tetrahedral ion. We present here a detailed correspondence between the tensorial formalism using the Td⊃C2v reorientation and the usual Hamiltonian of Watson. We have also performed ab initio calculations in order to determine the centrifugal distorsion constants in the vibrational ground state.
Structure-based evaluation of the resonance interactions and effectiveness of the charge transfer in nitroamines
2011
Structural data for five nitroamines of general formula Me₂N–G–NO₂ show effectiveness of the ground-state charge transfer to be most and least efficient in N,N-dimethylnitramine and in 4-N,N-dimethylamino-β-nitrostyrene, respectively. Electron-donor power of the amino nitrogen atom in the latter compound is less than that in 4-nitro-β-N,N-dimethylaminostyrene (these two compounds are isomers). Natural population analysis shows that the charge transfer from the amino to the nitro oxygen atoms is most effective in N,N-dimethylnitramine, Me₂N–NO₂. The nitro oxygen atoms are not the only acceptors of the negative charge lost by the amino nitrogen atom. The nitro group in two substituted nitrobe…
Testing refined shell-model interactions in the sd shell: Coulomb excitation of 26Na
2015
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transitionmatrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive b…
A comprehensive guide to the physics and usage of PYTHIA 8.3
2022
This manual describes the PYTHIA 8.3 event generator, the most recent version of an evolving physics tool used to answer fundamental questions in particle physics. The program is most often used to generate high-energy-physics collision "events", i.e. sets of particles produced in association with the collision of two incoming high-energy particles, but has several uses beyond that. The guiding philosophy is to produce and reproduce properties of experimentally obtained collisions as accurately as possible. The program includes a wide ranges of reactions within and beyond the Standard Model, and extending to heavy ion physics. Emphasis is put on phenomena where strong interactions play a ma…
Gallium preference for the occupation of tetrahedral sites in Lu3(Al5-xGax)O12multicomponent garnet scintillators according to solid-state nuclear ma…
2019
Abstract In this study, the distributions of aluminum and gallium atoms over the tetrahedral and octahedral sites in the garnet structure were investigated in mixed Lu3Al5-xGaxO12 crystals by using 27Al and 71Ga magic angle spinning nuclear magnetic resonance (NMR) and single crystal 71Ga NMR. The experimental study was supported by theoretical calculations based on density functional theory (DFT) in order to predict the trends in terms of the substitutions of Al by Ga in the mixed garnets. Both the experimental and theoretical results indicated the non-uniform distribution of Al and Ga over the tetrahedral and octahedral sites in the garnet structure, with a strong preference for Ga occupy…
A Theoretical and Experimental Investigation of the Spectroscopic Properties of a DNA-Intercalator Salphen-Type ZnIIComplex
2014
The photophysical and DNA-binding properties of the cationic zinc(II) complex of 5-triethylammonium methyl salicylidene ortho-phenylenediiminato (ZnL 2 + ) were investi- gated by a combination of experimental and theoretical methods. DFT calculations were performed on both the ground and the first excited states of ZnL 2 + and on its possi- ble mono- and dioxidation products, both in vacuo and in selected solvents mimicked by the polarizable continuum model. Comparison of the calculated absorption and fluores- cence transitions with the corresponding experimental data led to the conclusion that visible light induces a two-elec- tron photooxidation process located on the phenylenediimi- nato…
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
2020
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,…
Spin caloric transport from density-functional theory
2019
Spin caloric transport refers to the coupling of heat with spin transport. Its applications primarily concern the generation of spin currents and control of magnetisation by temperature gradients for information technology, known by the synonym spin caloritronics. Within the framework of ab initio theory, new tools are being developed to provide an additional understanding of these phenomena in realistic materials, accounting for the complexity of the electronic structure without adjustable parameters. Here, we review this progress, summarising the principles of the density-functional-based approaches in the field and presenting a number of application highlights. Our discussion includes th…
Titanocene Selenide Sulfides Revisited: Formation, Stabilities, and NMR Spectroscopic Properties
2019
[TiCp2S5] (phase A), [TiCp2Se5] (phase F), and five solid solutions of mixed titanocene selenide sulfides [TiCp2SexS5−x] (Cp = C5H5−) with the initial Se:S ranging from 1:4 to 4:1 (phases B–E) were prepared by reduction of elemental sulfur or selenium or their mixtures by lithium triethylhydridoborate in thf followed by the treatment with titanocene dichloride [TiCp2Cl2]. Their 77Se and 13C NMR spectra were recorded from the CS2 solution. The definite assignment of the 77Se NMR spectra was based on the PBE0/def2-TZVPP calculations of the 77Se chemical shifts and is supported by 13C NMR spectra of the samples. The following complexes in varying ratios were identified in the CS2 solutions of …
Systematic conformational search analysis of the SRR and RRR epimers of 7-hydroxymatairesinol
2010
An extensive and systematic conformational search was performed on the two epimers of the natural lignan 7-hydroxymatairesinol (HMR), by means of a home-made Systematic Conformational Search Analysis (SCSA) code, designed to select more and more stable conformers through sequential geometry optimization of trial structures at increasing levels of calculation theory. In the present case, the starting molecular structures were selected by the semi-empirical AM1 method and filtered – i.e. decreased in number by choosing the more stable species – on the basis of their energy calculated by the HF method and the 6-31G(d) basis set. The geometries obtained were further refined by performing densit…