Search results for "Calculations"
showing 10 items of 468 documents
Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS
2021
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWFW and FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq and FAPESP, Brazil, NSERC, NRC, and CFI, Canada, CERN and ANID, Chile, CAS, MOST, and NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, and VSC CR, Czech Republic, DNRF and DNSRC, Denmark, IN2P3-CNRS and CEA-DRF/IRFU, France, SRNSFG, Georgia, BMBF, HGF, and MPG, Germany, GSRT, Greece, RGC and Hong Kong SAR, China, ISF and Benoziyo Center, Israel, INFN, Italy, MEXT and JSPS, Japan, CNR…
Calculations Yb [Dataset]
2022
Orca outputs of TDDFT and DFT calculations on a Yb complex Archivos OUT. Abrir con Windows Notepad, WordPad, TextEdit o Text editor. Archivos OUT. Abrir con Windows Notepad, WordPad, TextEdit o Text editor.
Study of the Ti-44(alpha, p)V-47 reaction and implications for core collapse supernovae
2014
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ -ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is 44Ti(α, p)47V. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16 MeV/u, corresponding to an energy distribution, for reacting α-par…
Excited States Calculations of MoS2@ZnO and WS2@ZnO Two-Dimensional Nanocomposites for Water-Splitting Applications
2021
This research was funded by the Latvian Scientific Council grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union's Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.
Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure
2021
This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540) as well as by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002 for A.I. Popov. In addition, J. Purans is grateful to the ERAF project 1.1.1.1/20/A/057 while A. Platonenko was supported by Latvian Research Council No. LZP-2018/1-0214. The authors thank A. Lushchik and M. Lushchik for many useful discussions. The research was (partly) performed in the Institute of Solid State Physics, University of Latvia ISSP UL. ISSP UL as…
Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
2019
This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…
The experimental facility for the Search for Hidden Particles at the CERN SPS
2019
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…
Oxadiazolyl-pyridines and perfluoroalkyl-carboxylic acids as building blocks for protic ionic liquids: crossing the thin line between ionic and hydro…
2012
A series of 18 samples has been prepared in order to obtain fluorinated materials as Protic Ionic Liquids (PILs). These were synthesized by appropriately mixing 1,2,4-oxadiazoles derivatised with two pyridines, or one pyridine and a fluorinated chain, and perfluoroalkyl-carboxylic acids, either mono- or dicarboxylic, leading to symmetric and non-symmetric materials. Many of them showed low melting points. However, the possibility of classifying the synthesized materials as PILs is discussed in terms of effective ionicity of the systems by the combination of Density Functional Theory (DFT) calculation and IR spectroscopy. The important outcome of our investigation is that the complete proton…
Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory
2013
Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experimen…
Theoretical study of the electronic spectrum of p-benzoquinone
1999
The electronic excited states of p-benzoquinone have been studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The calculation of the singlet–singlet and singlet–triplet transition energies comprises 19 valence singlet excited states, 4 valence triplet states, and the singlet 3s,3p, and 3d members of the Rydberg series converging to the first four ionization limits. The computed vertical excitation energies are found to be in agreement with the available experimental data. Conclusive assignments to both valence and Rydberg states have been performed. The main features of the electronic spectrum correspond to the π…