Search results for "Calculus"

showing 10 items of 617 documents

Some remarks on unconditionally convergent multipliers

2017

We present some results concerning the representation of unconditionally convergent multipliers, including a reformulation of a conjecture of Balazs and Stoeva.

Conjecture010102 general mathematicsHilbert spaceData_CODINGANDINFORMATIONTHEORY01 natural sciencesElectronic mail010101 applied mathematicssymbols.namesakeConvergence (routing)symbolsCalculusApplied mathematicsHardware_ARITHMETICANDLOGICSTRUCTURES0101 mathematicsRepresentation (mathematics)Mathematics2017 International Conference on Sampling Theory and Applications (SampTA)
researchProduct

Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness

2020

Non-local time evolution of material stress/strain is often referred to as material hereditariness. In this paper, the widely used non-linear approach to single integral time non-local mechanics named quasi-linear approach is proposed in the context of fractional differential calculus. The non-linear model of the springpot is defined in terms of a single integral with separable kernel endowed with a non-linear transform of the state variable that allows for the use of Boltzmann superposition. The model represents a self-similar hierarchy that allows for a time-invariance as the result of the application of the conservation laws at any resolution scale. It is shown that the non-linear spring…

Conservation lawState variablePhysics and Astronomy (miscellaneous)Hierarchy (mathematics)Scale (ratio)General Mathematicslcsh:MathematicsTime evolutionmechanical hierarchy02 engineering and technologyfractional calculus021001 nanoscience & nanotechnologylcsh:QA1-939Fractional calculusNonlinear systemSuperposition principle020303 mechanical engineering & transports0203 mechanical engineeringChemistry (miscellaneous)non-linear springpotComputer Science (miscellaneous)Applied mathematics0210 nano-technologyfractional calculus; non-linear springpot; mechanical hierarchyMathematicsSymmetry
researchProduct

Long-range cohesive interactions of non-local continuum faced by fractional calculus

2008

Abstract A non-local continuum model including long-range forces between non-adjacent volume elements has been studied in this paper. The proposed continuum model has been obtained as limit case of two fully equivalent mechanical models: (i) A volume element model including contact forces between adjacent volumes as well as long-range interactions, distance decaying, between non-adjacent elements. (ii) A discrete point-spring model with local springs between adjacent points and non-local springs with distance-decaying stiffness connecting non-adjacent points. Under the assumption of fractional distance-decaying interactions between non-adjacent elements a fractional differential equation in…

Constitutive equationFractional calculuLong-range forceLong-range forcesMaterials Science(all)Modelling and SimulationGeneral Materials ScienceBoundary value problemLimit (mathematics)Volume elementMathematicsNon-local modelContinuum (topology)Multiple integralMechanical EngineeringApplied MathematicsMathematical analysisFractional finite differencesFractional calculusNon-local modelsCondensed Matter PhysicsFractional calculusMechanics of MaterialsModeling and SimulationBounded functionSettore ICAR/08 - Scienza Delle CostruzioniInternational Journal of Solids and Structures
researchProduct

A fractional order theory of poroelasticity

2019

Abstract We introduce a time memory formalism in the flux-pressure constitutive relation, ruling the fluid diffusion phenomenon occurring in several classes of porous media. The resulting flux-pressure law is adopted into the Biot’s formulation of the poroelasticity problem. The time memory formalism, useful to capture non-Darcy behavior, is modeled by the Caputo’s fractional derivative. We show that the time-evolution of both the degree of settlement and the pressure field is strongly influenced by the order of Caputo’s fractional derivative. Also a numerical experiment aiming at simulating the confined compression test poroelasticity problem of a sand sample is performed. In such a case, …

Constitutive equationPoromechanics02 engineering and technology01 natural sciencesPressure fieldDarcy–Weisbach equationPhysics::Geophysics010305 fluids & plasmas0203 mechanical engineeringFractional operators0103 physical sciencesCaputo's fractional derivative; Fractional operators; PoroelasticityApplied mathematicsGeneral Materials ScienceCaputo's fractional derivative Fractional operators PoroelasticityCaputo's fractional derivativeCivil and Structural EngineeringMathematicsOrder theoryBiot numberMechanical EngineeringPoroelasticityCondensed Matter PhysicsFractional calculus020303 mechanical engineering & transportsMechanics of MaterialsFractional operatorSettore ICAR/08 - Scienza Delle CostruzioniPorous medium
researchProduct

Fractional visco-elastic Euler–Bernoulli beam

2013

Abstract Aim of this paper is the response evaluation of fractional visco-elastic Euler–Bernoulli beam under quasi-static and dynamic loads. Starting from the local fractional visco-elastic relationship between axial stress and axial strain, it is shown that bending moment, curvature, shear, and the gradient of curvature involve fractional operators. Solution of particular example problems are studied in detail providing a correct position of mechanical boundary conditions. Moreover, it is shown that, for homogeneous beam both correspondence principles also hold in the case of Euler–Bernoulli beam with fractional constitutive law. Virtual work principle is also derived and applied to some c…

Constitutive equationVirtual work principleCurvatureFractional calculuViscoelasticityQuasi-static problemsVisco-elastic beamMaterials Science(all)Euler-Bernoulli beamModelling and SimulationGeneral Materials ScienceVirtual workBoundary value problemMathematicsApplied MathematicsMechanical EngineeringMathematical analysisFractional calculusCondensed Matter PhysicsFractional calculusClassical mechanicsMechanics of MaterialsQuasi-static problemModeling and SimulationEuler–Bernoulli beamBending momentCylinder stressSettore ICAR/08 - Scienza Delle CostruzioniInternational Journal of Solids and Structures
researchProduct

On numerical simulation of the continuous casting process

1988

In this paper a steady-state nonlinear parabolic-type model, which simulates the multiphase heat transfer during solidification in continuous casting, is presented. An enthalpy formulation is used and we apply a FE-method in space and an implicit Euler method in time. A detailed solution algorithm is presented. We compute the temperature distributions in the strand when the boundary conditions (mold/spray cooling) on the strand surface are known. The numerical model gives thereby a good basis for the testing of new designs of continuous-casting machines. An application of the model to continuous casting of billets is presented.

Continuous castingSurface (mathematics)Nonlinear systemMaterials scienceComputer simulationGeneral MathematicsHeat transferMultiphase heat transferGeneral EngineeringCalculusBoundary value problemMechanicsBackward Euler methodJournal of Engineering Mathematics
researchProduct

The interrelation between stochastic differential inclusions and set-valued stochastic differential equations

2013

Abstract In this paper we connect the well established theory of stochastic differential inclusions with a new theory of set-valued stochastic differential equations. Solutions to the latter equations are understood as continuous mappings taking on their values in the hyperspace of nonempty, bounded, convex and closed subsets of the space L 2 consisting of square integrable random vectors. We show that for the solution X to a set-valued stochastic differential equation corresponding to a stochastic differential inclusion, there exists a solution x for this inclusion that is a ‖ ⋅ ‖ L 2 -continuous selection of X . This result enables us to draw inferences about the reachable sets of solutio…

Continuous-time stochastic processApplied MathematicsMathematical analysisStochastic calculusMalliavin calculusStochastic partial differential equationsymbols.namesakeStochastic differential equationDifferential inclusionRunge–Kutta methodsymbolsApplied mathematicsAnalysisMathematicsAlgebraic differential equationJournal of Mathematical Analysis and Applications
researchProduct

The Master Equation

2009

Continuous-time stochastic processsymbols.namesakeStochastic differential equationQuantum stochastic calculusStochastic processMaster equationKinetic schemesymbolsStatistical physicsChapman–Kolmogorov equationMathematics
researchProduct

Ambit processes and stochastic partial differential equations

2011

Ambit processes are general stochastic processes based on stochastic integrals with respect to Levy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection between ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Levy noise analysis.

Continuous-time stochastic processwhite noise analysisambit processesstochastic partial differential equationsStochastic modellingMathematical analysisStochastic calculusMalliavin calculusStochastic partial differential equationStochastic differential equationmartingale measuresMathematics::ProbabilityLocal martingaleLévy basesApplied mathematicsMartingale (probability theory)Mathematics
researchProduct

Fractional calculus in solid mechanics: local versus non-local approach

2009

Several enriched continuum mechanics theories have been proposed by the scientific community in order to develop models capable of describing microstructural effects. The aim of the present paper is to revisit and compare two of these models, whose common denominator is the use of fractional calculus operators. The former was proposed to investigate damage in materials exhibiting a fractal-like microstructure. It makes use of the local fractional derivative, which turns out to be a powerful tool to describe irregular patterns such as strain localization in heterogeneous materials. On the other hand, the latter is a non-local approach that models long-range interactions between particles by …

Continuum mechanicsOrder (ring theory)Fractional Calculus Fractals Local Fractional CalculusCommon denominatorCondensed Matter PhysicsNon localAtomic and Molecular Physics and OpticsFractional calculusQuantum mechanicsSolid mechanicsStatistical physicsSettore ICAR/08 - Scienza Delle CostruzioniMathematical PhysicsMathematicsPhysica Scripta
researchProduct