Search results for "Cell Movement"
showing 10 items of 396 documents
MiR-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy
2019
Abstract Glioblastoma (GB) is the most aggressive and common form of primary brain tumor, characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is only of 14.6 months, despite the aggressive standard post-surgery treatment approaches of radiotherapy concomitant with chemotherapy with temozolomide. Altered cell metabolism has been identified as an emerging cancer hallmark, including in GB, thus offering a new target for cancer therapies. On the other hand, abnormal expression levels of miRNAs, key regulators of multiple molecular pathways, have been correlated with pathological manifestations of cancer, such…
Modulating endothelial adhesion and migration impacts stem cell therapies efficacy
2020
Abstract Background Limited knowledge of stem cell therapies` mechanisms of action hampers their sustainable implementation into the clinic. Specifically, the interactions of transplanted stem cells with the host vasculature and its implications for their therapeutic efficacy are not elucidated. We tested whether adhesion receptors and chemokine receptors on stem cells can be functionally modulated, and consequently if such modulation may substantially affect therapeutically relevant stem cell interactions with the host endothelium. Methods We investigated the effects of cationic molecule polyethylenimine (PEI) treatment with or without nanoparticles on the functions of adhesion receptors a…
N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide : a novel reversible antimitotic agent inhibiting cancer cell motility
2016
Este es el post-print que se ha publicado de forma definitiva en: https://www.sciencedirect.com/science/article/abs/pii/S0006295216301423 A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescen…
Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration.
2015
The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model…
The Impact of Small Extracellular Vesicles on Lymphoblast Trafficking across the Blood-Cerebrospinal Fluid Barrier In Vitro.
2020
Central nervous System (CNS) disease in pediatric acute lymphoblastic leukemia (ALL) is a major concern, but still, cellular mechanisms of CNS infiltration are elusive. The choroid plexus (CP) is a potential entry site, and, to some extent, invasion resembles CNS homing of lymphocytes during healthy state. Given exosomes may precondition target tissue, the present work aims to investigate if leukemia-derived exosomes contribute to a permissive phenotype of the blood-cerebrospinal fluid barrier (BCSFB). Leukemia-derived exosomes were isolated by ultracentrifugation from the cell lines SD-1, Nalm-6, and P12-Ichikawa (P12). Adhesion and uptake to CP epithelial cells and the significance on sub…
Ellagitannin-rich cloudberry inhibits hepatocyte growth factorinduced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcin…
2016
// Anne-Maria Pajari 1, 2 , Essi Paivarinta 1 , Lassi Paavolainen 3 , Elina Vaara 1 , Tuuli Koivumaki 4 , Ritu Garg 5 , Anu Heiman-Lindh 1 , Marja Mutanen 1 , Varpu Marjomaki 3 , Anne J. Ridley 2, 5 1 Department of Food and Environmental Sciences, Division of Nutrition, University of Helsinki, Helsinki, Finland 2 University College London, Ludwig Institute for Cancer Research, London, UK 3 Department of Biological and Environmental Science / Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland 4 Department of Food and Environmental Sciences, Division of Food Chemistry, University of Helsinki, Helsinki, Finland 5 Randall Division of Cell & Molecular Biophysics, King’s College Lond…
NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice.
2018
See Contreras and Hippenmeyer (doi:10.1093/brain/awy218) for a scientific commentary on this article. Autism spectrum disorders (ASDs) are complex conditions with diverse aetiologies. Szczurkowska et al. demonstrate that two ASD-related molecules – FGFR2 and Negr1 – physically interact to act on the same downstream pathway, and regulate cortical development and ASD-relevant behaviours in mice. Identifying common mechanisms in ASDs may reveal targets for pharmacological intervention.
Peroxisome proliferator-activated receptor alpha deficiency impairs regulatory T cell functions: Possible application in the inhibition of melanoma t…
2016
International audience; Regulatory T (Treg) cells are important to induce and maintain immunological self-tolerance. Although the progress accomplished in understanding the functional mechanism of Treg cells, intracellular molecules that control the mechanisms of their suppressive capacity are still on investigation. The present study showed that peroxisome proliferator-activated receptor-alpha deficiency impaired the suppressive activity of Treg cells on CD4(+)CD25(-) and CD8(+) T cell proliferation. In Treg cells, PPARα gene deletion also induced a decrease of migratory abilities, and downregulated the expression of chemokine receptors (CCR-4, CCR-8 and CXCR-4) and p27(KIP1) mRNA. Treg ce…
NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance
2016
AbstractSorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 signi…
Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system.
2018
Developing the bloodbrain barrier During development, signals need to be dynamically integrated by endothelial cells, neurons, and glia to achieve functional neuro-glia-vascular units in the central nervous system. During cortical development, neuronal Dab1 and ApoER2 receptors respond to a guidance cue called reelin. Studying mice, Segarra et al. found that Dab1 and ApoER2 are also expressed in endothelial cells (see the Perspective by Thomas). The integration of reelin signaling in endothelial cells and neurons facilitates the communication between vessels, glia, and neurons that is necessary for the correct positioning of neurons during cortical development. This integration is also impo…