Search results for "Cell Signaling"
showing 10 items of 228 documents
Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia
2018
International audience; Genomic regions subjected to selection frequently show signatures such as within-population reduced nucleotide diversity and outlier values of differentiation among differentially selected populations. In this study, we analyzed 50K SNP genotype data of 373 animals belonging to 23 sheep breeds of different geographic origins using the Rsb (extended haplotype homozygosity) and FST statistical approaches, to identify loci associated with the fat-tail phenotype. We also checked if these putative selection signatures overlapped with regions of high-homozygosity (ROH). The analyses identified novel signals and confirmed the presence of selection signature in genomic regio…
Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver
2018
Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0-1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects w…
Gene therapy for chondral and osteochondral regeneration: is the future now?
2017
Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcripti…
Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer.
2020
Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signali…
The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation.
2016
Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial f…
An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling
2017
Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as…
The Stalk Domain of NKp30 Contributes to Ligand Binding and Signaling of a Preassembled NKp30-CD3ζ Complex
2016
The natural cytotoxicity receptor (NCR) NKp30 (CD337) is a key player for NK cell immunosurveillance of infections and cancer. The molecular details of ligand recognition and its connection to CD3ζ signaling remain unsolved. Here, we show that the stalk domain (129KEHPQLGAGTVLLLR143) of NKp30 is very sensitive to sequence alterations, as mutations lead to impaired ligand binding and/or signaling capacity. Surprisingly, the stalk domains of NKp30 and NKp46, another NCR employing CD3ζ for signaling, were not exchangeable without drastic deficiencies in folding, plasma membrane targeting, and/or ligand-induced receptor signaling. Further mutational studies, N-glycosylation mapping, and plasma …
Repurposing of Drugs Targeting YAP-TEAD Functions
2018
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be rele…
Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics
2016
AbstractBioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects …
The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration
2017
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing either human FOXP2 cDNA or its orthologues from the common chimpanzee, Rhesus monkey, and marmoset, respectively. Subsequent RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. Importantly, RT-qPCR and Western blotting indicated differential re…