Search results for "Cell Transformation"
showing 10 items of 180 documents
Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives
2018
Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their…
A catch-22: Interleukin-22 and cancer.
2017
Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity…
PBRM1 loss is a late event during the development of cholangiocarcinoma
2017
Aims: Somatic mutations in genes encoding chromatin remodellers have been reported recently in several cancer types, including approximately half of cholangiocarcinomas. One of the most commonly mutated chromatin remodellers in cholangiocarcinoma is the Polybromo-1 (PBRM1) gene located on chromosome 3p21, which encodes a subunit of the SWI/SNF complex. The aim of this study was to determine the timing of PBRM1 mutations in biliary carcinogenesis. Methods and results: In order to accomplish this goal, we used immunohistochemistry to assess PBRM1 protein expression in a series of precursor lesions and invasive biliary carcinomas. Previous studies have correlated loss of protein expression on …
Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis.
2017
The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF…
Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation
2016
ABSTRACT A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology,…
Cytoplasmic localization of the cell polarity factor scribble supports liver tumor formation and tumor cell invasiveness
2018
The loss of epithelial cell polarity plays an important role in the development and progression of liver cancer. However, the specific molecular mechanisms supporting tumor initiation and progression are poorly understood. In this study, transcriptome data and immunofluorescence stains of tissue samples derived from hepatocellular carcinoma (HCC) patients revealed that overexpression associated with cytoplasmic localization of the baso-lateral cell polarity complex protein Scribble (Scrib) correlated with poor prognosis of HCC patients. In comparison to HCC cells stably expressing wildtype Scrib (ScribWT), mutated Scrib with enforced cytoplasmic enrichment (ScribP305L) induced AKT signaling…
Molecular chaperones in tumors of salivary glands.
2020
The salivary glands are key components of the mouth and play a central role in its physiology. Their importance may be appreciated considering their number, occurrence in pairs, and distribution in the mouth: two parotids, two submandibular, two sublingual, and many other small ones scattered throughout the mouth. They produce saliva, without which ingestion of non-liquid nutrients and speech would be practically impossible. Nevertheless, the physiology and pathology of salivary glands are poorly understood. For instance, tumors of salivary glands occur, and their incidence is on the rise, but their etiology and pathogenesis are virtually unknown, although some risk factors have been identi…
Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis
2018
Human papillomaviruses (HPVs) belong to a small spherical virus family and are transmitted through direct contact, most often through sexual behavior. More than 200 types of HPV are known, a dozen or so of which are classified as high-risk viruses (HR HPV) and may contribute to the development of cervical cancer. HPV is a small virus with a capsid composed of L1 and L2 proteins, which are crucial for entry to the cell. The infection begins at the basal cell layer and progresses to involve cells from higher layers of the cervical epithelium. E6 and E7 viral proteins are involved in the process of carcinogenesis. They interact with suppressors of oncogenesis, including p53 and Rb proteins. Th…
Wip1 phosphatase: between p53 and MAPK kinases pathways.
2016
IF 5.008; International audience; Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivity of tumor cells to anti-cancer treatment. Wild type p53-induced phosphatase, Wip1, is involved in governance of both pathways. Recently, strategies directed to manipulation with Wip1 activity proposed to advance current day anticancer treatment and novel chemical com…
TP53 and p16INK4A, but not H-KI-Ras, are involved in tumorigenesis and progression of pleomorphic adenomas.
2006
The putative role of TP53 and p16INK4A tumor suppressor genes and Ras oncogenes in the development and progression of salivary gland neoplasias was studied in 28 cases of pleomorphic adenomas (PA), 4 cases of cystic adenocarcinomas, and 1 case of carcinoma ex-PA. Genetic and epigenetic alterations in the above genes were analyzed by Polymerase Chain Reaction/Single Strand Conformational Polymorphism (PCR/SSCP) and sequencing and by Methylation Specific-PCR (MS-PCR). Mutations in TP53 were found in 14% (4/28) of PAs and in 60% (3/5) of carcinomas. Mutations in H-Ras and K-Ras were identified in4%(1/28) and7% (2/28) of PAs, respectively. Only 20% (1/5) of carcinomas screened displayed mutatio…