Search results for "Cellular localization"

showing 10 items of 93 documents

2017

Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference…

0301 basic medicinePathologymedicine.medical_specialtyCell typeRetinagenetic structuresPhotoreceptor Connecting CiliumBiologyProtein subcellular localization predictioneye diseasesDeep sequencingCell biologyTranscriptome03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologymedicine.anatomical_structuremedicineImmunohistochemistrysense organsReceptorFrontiers in Cellular Neuroscience
researchProduct

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

2017

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

0301 basic medicinePhysiologyProtein Extractionlcsh:MedicineYeast and Fungal ModelsPolymerase Chain ReactionBiochemistryGreen fluorescent proteinEpitopesDatabase and Informatics MethodsGene Expression Regulation FungalImmune PhysiologyProtein purificationMacromolecular Structure AnalysisMedicine and Health SciencesProto-Oncogene Proteins c-myclcsh:ScienceStainingExtraction TechniquesImmune System ProteinsMultidisciplinarybiologyGene targetingProtein subcellular localization predictionMembrane StainingExperimental Organism SystemsGene TargetingArtifactsSequence AnalysisPlasmidsResearch ArticleProtein StructureSaccharomyces cerevisiae ProteinsBioinformaticsRecombinant Fusion ProteinsGenetic VectorsGreen Fluorescent ProteinsImmunologySaccharomyces cerevisiaeHemagglutinins ViralSaccharomyces cerevisiaeComputational biologyResearch and Analysis MethodsGreen Fluorescent ProteinGenomic InstabilityAntibodiesProtein–protein interactionProto-Oncogene Proteins c-mycSaccharomyces03 medical and health sciencesModel OrganismsAmino Acid Sequence AnalysisMolecular BiologyStaining and Labelinglcsh:ROrganismsFungiBiology and Life SciencesProteinsbiology.organism_classificationFusion proteinYeastLuminescent Proteins030104 developmental biologySpecimen Preparation and Treatmentlcsh:QProtein Structure NetworksPLOS ONE
researchProduct

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct

Diversity in AMPA receptor complexes in the brain.

2017

AMPA receptor (AMPAR) complexes comprise four of the AMPAR subunits GluA1-4 and several additional interacting proteins. Subunit composition determines AMPAR function. However, AMPAR function depends to a large extent also on interacting proteins, which influence trafficking to the cell surface, activity-dependent subcellular localization and gating of AMPARs. In this review we report about recent findings on the diversity of AMPAR complexes that allow us to better understand functional properties of native receptors in the brain.

0301 basic medicineProtein subunitCellGatingAMPA receptorBiology03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansReceptors AMPAReceptormusculoskeletal neural and ocular physiologyGeneral NeuroscienceBrainGenetic VariationSubcellular localizationTransport proteinProtein Transport030104 developmental biologymedicine.anatomical_structurenervous systemNeuroscience030217 neurology & neurosurgeryFunction (biology)Current opinion in neurobiology
researchProduct

Homer2 and alcohol: A mutual interaction

2017

The past two decades of data derived from addicted individuals and preclinical animal models of addiction implicate a role for the excitatory glutamatergic transmission within the mesolimbic structures in alcoholism. The cellular localization of the glutamatergic receptor subtypes, as well as their signaling efficiency and function, are highly dependent upon discrete functional constituents of the postsynaptic density, including the Homer family of scaffolding proteins. The consequences of repeated alcohol administration on the expression of the Homer family proteins demonstrate a crucial and active role, particularly for the expression of Homer2 isoform, in regulating alcohol-induced behav…

0301 basic medicineScaffold proteinlcsh:RC435-571media_common.quotation_subjectMini ReviewAddiction; Alcohol; Glutamate; Homer proteins; Homer2; Psychiatry and Mental HealthglutamateBiologyNucleus accumbensHomer203 medical and health sciencesGlutamatergic0302 clinical medicineExtended amygdalalcsh:PsychiatryNeuroplasticityCellular localizationmedia_commonPsychiatryHomer proteinalcoholAddictionHomer proteins030104 developmental biologyPsychiatry and Mental HealthaddictionNeurosciencePostsynaptic density030217 neurology & neurosurgery
researchProduct

Identification of the Tetraspanin CD9 as an Interaction Partner of Organic Cation Transporters 1 and 2

2019

Organic cation transporters (OCTs) are membrane proteins with relevant physiological (because they accept neurotransmitters as substrate) and pharmacological (because of their interaction with drugs) roles. The human OCTs hOCT1 (SLC22A1/hOCT1) and hOCT2 (SLC22A2/hOCT2) are highly expressed in hepatic (hOCT1) and in renal and neuronal tissue (hOCT2), suggesting a possible role in modulating neurotransmitter activity in the liver, kidney, and brain, and their clearance from the blood. Even though there are several data demonstrating that OCTs are regulated under various patho-physiological conditions, it remains largely unknown which proteins directly interact with OCTs and thereby influence …

0301 basic medicineTetraspaninsEndosome610BiochemistryInteractomeTetraspanin 29Madin Darby Canine Kidney CellsAnalytical Chemistry03 medical and health sciencesDogs610 Medical sciences MedicineTetraspaninAnimalsHumansCellular localizationOrganic cation transport proteins030102 biochemistry & molecular biologybiologyChemistryCell MembraneMembrane ProteinsOrganic Cation Transporter 2TransporterCompartmentalization (psychology)Cell biologyProtein TransportHEK293 Cells030104 developmental biologyMembrane proteinembryonic structuresbiology.proteinMolecular MedicineOctamer Transcription Factor-1Biotechnology
researchProduct

Visualizing Human Protein‐Protein Interactions and Subcellular Localizations on Cell Images Through CellMap

2020

Visualizing protein data remains a challenging and stimulating task. Useful and intuitive visualization tools may help advance biomolecular and medical research; unintuitive tools may bar important breakthroughs. This protocol describes two use cases for the CellMap (http://cellmap.protein.properties) web tool. The tool allows researchers to visualize human protein-protein interaction data constrained by protein subcellular localizations. In the simplest form, proteins are visualized on cell images that also show protein-protein interactions (PPIs) through lines (edges) connecting the proteins across the compartments. At a glance, this simultaneously highlights spatial constraints that prot…

0303 health sciencesgenetic structuresComputer scienceCells030305 genetics & heredityProteinsA proteinComputational biologyBiochemistryWeb toolProtein subcellular localization predictionVisualizationProtein–protein interaction03 medical and health sciencesImaging Three-DimensionalStructural BiologyProtein Interaction MappingHumansProtocol (object-oriented programming)SoftwareSubcellular Fractions030304 developmental biologyCurrent Protocols in Bioinformatics
researchProduct

Different pathways for the nuclear import of yeast RNA polymerase II

2015

Recent studies suggest that RNA polymerase II (Pol II) has to be fully assembled before being imported into the nucleus, while other reports indicate a distinct mechanism to import large and small subunits. In yeast, Iwr1 binds to the holoenzyme assembled in the cytoplasm and directs its nuclear entry. However, as IWR1 is not an essential gene, Iwr1-independent pathway(s) for the nuclear import of Pol II must exist. In this paper, we investigate the transport into the nucleus of several large and small Pol II subunits in the mutants of genes involved in Pol II biogenesis. We also analyse subcellular localization in the presence of drugs that can potentially affect Pol II nuclear import. Our…

Active Transport Cell NucleusBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistrychemistry.chemical_compoundStructural BiologyRNA polymeraseGeneticsmedicineMolecular BiologyCell NucleusbiologyProcessivitySubcellular localizationMolecular biologyCell biologyCell nucleusmedicine.anatomical_structurechemistrybiology.proteinRNA Polymerase IITranscription factor II DNuclear transportCarrier ProteinsBiogenesisBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility

2009

Successful embryo implantation depends on the quality of the embryo, as well as on the receptivity of the endometrium. The aim of this study was to investigate the endometrial gene expression profile in women with unexplained infertility in comparison with fertile controls at the time of embryo implantation in order to find potential predictive markers of uterine receptivity and to identify the molecular mechanisms of infertility. High-density oligonucleotide gene arrays, comprising 44 000 gene targets, were used to define the endometrial gene expression profile in infertile (n = 4) and fertile (n = 5) women during the mid-secretory phase (day LH + 7). Microarray results were validated usin…

AdultInfertilityEmbryologymedicine.medical_specialtyMicroarrayBiologyEndometriumAndrologyEndometriumPregnancyInternal medicineGeneticsmedicineHumansEmbryo ImplantationMolecular BiologyCellular localizationOligonucleotide Array Sequence AnalysisUnexplained infertilityRegulation of gene expressionPrincipal Component AnalysisReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingObstetrics and GynecologyCell Biologymedicine.diseaseGene expression profilingmedicine.anatomical_structureEndocrinologyGene Expression RegulationReproductive MedicineIn uteroFemaleInfertility FemaleDevelopmental BiologyMolecular Human Reproduction
researchProduct

Variability in human hepatic MRP4 expression: influence of cholestasis and genotype

2007

The multidrug resistance protein 4 (MRP4) is an efflux transporter involved in the transport of endogenous substrates and xenobiotics. We measured MRP4 mRNA and protein expression in human livers and found a 38- and 45-fold variability, respectively. We sequenced 2 kb of the 5'-flanking region, all exons and intron/exon boundaries of the MRP4 gene in 95 patients and identified 74 genetic variants including 10 non-synonymous variations, seven of them being located in highly conserved regions. None of the detected polymorphisms was significantly associated with changes in the MRP4 mRNA or protein expression. Immunofluorescence microscopy indicated that none of the non-synonymous variations af…

AdultMaleGenotypeProtein ConformationBiologyPolymorphism Single NucleotideExonCholestasisTerminology as TopicGenotypeGenetic variationGeneticsmedicineHumansRNA MessengerGeneCellular localizationPharmacologyMessenger RNACholestasisPolymorphism GeneticReverse Transcriptase Polymerase Chain ReactionIntronGenetic VariationDNAmedicine.diseaseImmunohistochemistryMolecular biologyIntronsGene Expression RegulationHaplotypesLiverMicroscopy FluorescenceMolecular MedicineFemaleMultidrug Resistance-Associated ProteinsThe Pharmacogenomics Journal
researchProduct