Search results for "Cellulose"
showing 10 items of 318 documents
Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging m…
2016
Cellulose nanocrystals (CNCs), extracted from trees, plants, or similar cellulose-containing materials, can be used in combination with other materials to improve their performance or introduce new applications. The main purpose of this study was to compare and understand the potentialities, as coatings for Poly(ethylene terephthalate) films, of CNCs obtained starting from the same cotton linters by two different processes: sulfuric acid hydrolysis and a less common treatment with ammonium persulfate (APS), able to provide also a cellulose oxidation. The results showed that CNCs produced through the APS treatment showed higher charge densities, due to the carboxylic groups formed during the…
Optimization of Cell Growth on Bacterial Cellulose by Adsorption of Collagen and Poly-L-Lysine
2015
Poly-L-lysine and collagen were separately added to bacterial cellulose (BC) nanofibers. The ionic surface charge had been previously modified in order to promote the adsorption of poly-L-lysine and collagen. Cell adhesion of Chinese hamster ovary (CHO) cells on BC surfaces was confirmed by removing unattached cells from the BC substrates. Cell viability was calculated and it was determined that both poly-L-lysine-BC and collagen-BC substrates are viable for cell growth. The results showed that the cell viability in poly-L-lysine modified BC substrate is similar to the one observed in polystyrene tissue culture plates.
High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates
2013
Interpolymer complex between hydroxypropyl cellulose and maleic acid-styrene copolymer: phase behavior of semi-dilute solutions.
2005
Summary: The phase behavior of a water/hydroxypropyl cellulose/maleic acid–styrene copolymer (H2O/HPC/MAc-S) system was investigated in the semi-dilute range by turbidimetry, rheology, and optical microscopy. The two polymers under investigation form interpolymer complexes via hydrogen bonding. In the case of a total polymer concentration of cpol = 5 mg · mL−1 a second phase segregates upon heating the homogeneous ternary system. By applying a constant shear rate ( = 50 s−1) the phase separation temperature of the system is 10–15 °C lower than for an unsheared one. For cpol = 10 mg · mL−1 phase separation has already occurred at room temperature when the two binary polymer solutions are mix…
Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition
2017
[EN] Broadband Dielectric Relaxation Spectroscopy was performed to study the molecular dynamics of dried Bacterial Cellulose/Carboxymethyl Cellulose-Graphene Oxide (BC/CMC-GO) composites as a function of the concentration of CMC in the culture media. At low temperature the dielectric spectra are dominated by a dipolar process labelled as a beta -relaxation, whereas electrode polarization and the contribution of dc-conductivity dominate the spectra at high temperatures and low frequency. The CMC concentration affects the morphological structure of cellulose and subsequently alters its physical properties. X-ray diffractometry measurements show that increasing the concentration of CMC promote…
Methyl cellulose-based edible films and coatings I. Effect of plasticizer content on water and 1-octen-3-ol sorption and transport
1995
Edible films were prepared from methyl cellulose with various concentrations of poly(ethylene glycol) 400 (PEG400) used as a plasticizer. Water vapour and 1-octen-3-ol (an aroma compound) were selected as hydrophilic and hydrophobic volatile penetrants respectively. Their solubility and permeability through methyl cellulose-based edible films were studied using gas chromatography methods. Whatever penetrant was used, the flux increased with the PEG400 content. Transfer behaviour, i.e., the order of increased magnitude of the transfer rate, strongly depends on the nature of the volatile compound. However, water sorption only depends on the PEG400 content whereas the aroma compound sorption i…
Chemical characterization and ultrastructure study of pulp fibers
2020
Abstract Understanding the ultrastructure and chemical characterization of pulp fibers is highly important in utilizing wood as a raw material in a wide scope of applications, such as forest biomass-based biorefineries and low-cost renewable materials. The observation of the ultrastructure is not possible without advanced microscopy and spectroscopy techniques. Therefore, this study focuses on exploring the ultrastructure of pulp fibers with helium ion microscopy (HIM) and scanning electron microscopy (SEM). For the analysis of chemical characterization in the pulp fibers, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were pe…
Transition to Reinforced State by Percolating Domains of Intercalated Brush-Modified Cellulose Nanocrystals and Poly(butadiene) in Cross-Linked Compo…
2013
The classic nanocomposite approach aims at percolation of low fraction of exfoliated individual reinforcing nanoscale elements within a polymeric matrix. By contrast, many of the mechanically excellent biological nanocomposites involve self-assembled and space-filled structures of hard reinforcing and soft toughening domains, with high weight fraction of reinforcements. Here we inspect a new concept toward mimicking such structures by studying whether percolation of intercalated domains consisting of alternating rigid and reinforcing, and soft rubbery domains could allow a transition to a reinforced state. Toward that, we present the functionalization of rigid native cellulose nanocrystals …
Thermomechanical Analysis of Isora Nanofibril Incorporated Polyethylene Nanocomposites
2021
The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE&ndash
Online measurement of floc size, viscosity, and consistency of cellulose microfibril suspensions with optical coherence tomography
2021
AbstractIn this study, cellulose microfibril (CMF) suspensions were imaged during pipe flow at consistencies of 0.4%, 1.0%, and 1.6% with optical coherence tomography (OCT) to obtain images of the structure and the local velocity of the suspension. The viscosities obtained by combining pressure loss measurement with the OCT velocity data showed typical shear thinning behavior and were in excellent agreement with viscosities obtained with ultrasound velocity profiling. The structural OCT images were used to calculate the radial and the axial floc sizes of the suspension. A fit of power law to the geometrical floc size–shear stress data gave the same power law index for all consistencies, sug…