Search results for "Channelrhodopsin"

showing 7 items of 7 documents

Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2

2018

Channelrhodopsins (ChRs) are light-gated cation channels. In spite of their wide use to activate neurons with light, the photocurrents of ChRs rapidly decay in intensity under both continuous illum...

0301 basic medicine010405 organic chemistryChemistryChannelrhodopsinGeneral Chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesPhotoexcitation03 medical and health sciences030104 developmental biologyColloid and Surface ChemistryBiophysicsJournal of the American Chemical Society
researchProduct

Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network

2018

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine al…

0301 basic medicineCell signalingSensory Receptor CellsInterneuronDopamineSensationNeuropeptideOptogeneticsBiologyReceptors DopamineAnimals Genetically Modified03 medical and health sciencesChannelrhodopsinsDopamineNeural PathwaysBiological neural networkmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsGeneral NeuroscienceNeuropeptidesdigestive oral and skin physiologyDopaminergicOptogenetics030104 developmental biologymedicine.anatomical_structureFoodDopamine receptorCalciumNeuroscienceLocomotionmedicine.drugNeuron
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

Convergence of Cortical and Sensory Driver Inputs on Single Thalamocortical Cells

2013

Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interac…

MalePatch-Clamp TechniquesCognitive NeuroscienceThalamusBiotinMice TransgenicSensory systemOptogeneticsBiologySomatosensory systemFunctional LateralityMembrane PotentialsMiceCellular and Molecular NeuroscienceChannelrhodopsinsMicroscopy Electron TransmissionThalamusNeural PathwaysmedicineAnimalsPhytohemagglutininsRats WistarCerebral CortexNeuronsExcitatory Postsynaptic PotentialsDextransddc:Ratsmedicine.anatomical_structureCerebral cortexSynapsesRecurrent thalamo-cortical resonanceVesicular Glutamate Transport Protein 2BrainstemNucleusNeuroscienceCerebral Cortex
researchProduct

Kinetics of proton release and uptake by channelrhodopsin-2

2012

Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the View the MathML sourceP3520 intermediate. As the View the MathML sourceP3520 state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the tw…

Models MolecularRhodopsinProtonKineticsBiophysicsAnalytical chemistryChannelrhodopsinBacteriorhodopsinBiochemistry530Protein Structure SecondaryProton transferStructural BiologyGeneticsMolecular BiologyIon channelMembrane potentialbiologyChemistryfungiBacteriorhodopsinBiological TransportCell BiologyHydrogen-Ion ConcentrationProton PumpsOptogeneticsKineticsRhodopsinBiophysicsbiology.proteinProtonsIon channelStoichiometry
researchProduct

Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy

2014

Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum num…

RhodopsinMaterials scienceproton transferProtein ConformationGeneral Chemical EngineeringBiophysicsAnalytical chemistryInfrared spectroscopymembrane proteinsProtonationtime-resolved spectroscopyGeneral Biochemistry Genetics and Molecular Biologychannelrhodopsinattenuated total reflectionProtein structureSpectroscopy Fourier Transform InfraredFourier transform infrared spectroscopyinfrared spectroscopySpectroscopyIssue 88biologyGeneral Immunology and MicrobiologybacteriorhodopsinGeneral Neurosciencesingular value decompositionstep-scanProteinsEspectroscòpia infrarojaBacteriorhodopsinPhotochemical ProcessesBacteriorhodopsinsAttenuated total reflectionprotein dynamicsbiology.proteinProtonsTime-resolved spectroscopyProteïnesJournal of Visualized Experiments
researchProduct

Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10 ns to 1 s

2017

We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800–1700 cm− 1) and on the CO rebinding reaction of myoglobin (1960–1840 cm− 1), at a spectral resolution of 1 cm− 1. The spectrometric setup covers the time range from 4 ns to nearly a second with a response time of 10–15 ns. Absorption changes as low as 1 × 10− 4 are detected in single-shot experiments at t > 1 μs, and of 5 × 10− 6 in kinetics obtained after averaging 100 shots. While previous time-res…

Time FactorsSpectrophotometry InfraredAbsorption spectroscopyAnalytical chemistry010402 general chemistry53001 natural sciencesMolecular physicsSpectral lineAnalytical Chemistrylaw.inventionchannelrhodopsinflash photolysislawSpectral resolutionAbsorption (electromagnetic radiation)InstrumentationSpectroscopyCarbon MonoxidebiologySpectrometerChemistrybacteriorhodopsinLasers010401 analytical chemistry500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikWaterBacteriorhodopsinLasertime-resolved IR spectroscopyAtomic and Molecular Physics and Optics0104 chemical sciencesSolutionsKineticsCascadeBacteriorhodopsinsmyoglobinbiology.proteinQuantum Theory
researchProduct