Search results for "Chaotic dynamics"
showing 10 items of 197 documents
Chaotic Cyclotron and Hall Trajectories Due to Spin-Orbit Coupling
2020
We demonstrate that the synergistic effect of a gauge field, Rashba spin-orbit coupling (SOC), and Zeeman splitting can generate chaotic cyclotron and Hall trajectories of particles. The physical origin of the chaotic behavior is that the SOC produces a spin-dependent (so-called anomalous) contribution to the particle velocity and the presence of Zeeman field reduces the number of integrals of motion. By using analytical and numerical arguments, we study the conditions of chaos emergence and report the dynamics both in the regular and chaotic regimes. {We observe the critical dependence of the dynamic patterns (such as the chaotic regime onset) on small variations in the initial conditions …
A quantum random walk of a Bose-Einstein condensate in momentum space
2016
Each step in a quantum random walk is typically understood to have two basic components: a ``coin toss'' which produces a random superposition of two states, and a displacement which moves each component of the superposition by different amounts. Here we suggest the realization of a walk in momentum space with a spinor Bose-Einstein condensate subject to a quantum ratchet realized with a pulsed, off-resonant optical lattice. By an appropriate choice of the lattice detuning, we show how the atomic momentum can be entangled with the internal spin states of the atoms. For the coin toss, we propose to use a microwave pulse to mix these internal states. We present experimental results showing an…
The Vlasov Limit for a System of Particles which Interact with a Wave Field
2008
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.
Critical Attractor and Universality in a Renormalization Scheme for Three Frequency Hamiltonian Systems
1998
We study an approximate renormalization-group transformation to analyze the breakup of invariant tori for three degrees of freedom Hamiltonian systems. The scheme is implemented for the spiral mean torus. We find numerically that the critical surface is the stable manifold of a critical nonperiodic attractor. We compute scaling exponents associated with this fixed set, and find that they can be expected to be universal.
Rich dynamics and anticontrol of extinction in a prey-predator system
2019
This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete sys…
Renormalization group approach to chaotic strings
2012
Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vacuum expectation value. A highly nontrivial and selfsimilar parameter dependence is found, produced by perturbative and nonperturbative effects, for which we develop a mathematical description in terms of suitable scaling functions. Our analytic results are in good agreement with numerical simulati…
Kolmogorov-Arnold-Moser–Renormalization-Group Analysis of Stability in Hamiltonian Flows
1997
We study the stability and breakup of invariant tori in Hamiltonian flows using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. We implement the scheme numerically for a family of Hamiltonians quadratic in the actions to analyze the strong coupling regime. We show that the KAM iteration converges up to the critical coupling at which the torus breaks up. Adding a renormalization consisting of a rescaling of phase space and a shift of resonances allows us to determine the critical coupling with higher accuracy. We determine a nontrivial fixed point and its universality properties.
Relaxation, postponement, and features of the attractor in a driven varactor oscillator
1990
The driven varactor oscillator is investigated by numerical integration of its ODEs using the standard model of circuit theory. Attention is given to some properties of the basic relaxation mechanism. For time dependent amplitudes of the sinusoidal driving voltage the post-ponement of the bifurcations is characterized by transient Lyapunov numbers. The postponement of the first bifurcation shows the same dependence on the sweep velocity as in the case of the nonautonomous quadratic map. The shapes of the attractors are displayed in extended phase space. Generalized Renyi-dimensionsD 0 andD 1 have been determined in the chaotic region. A corresponding twodimensional Pioncare map indicates se…
Cellular automaton for chimera states
2016
A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, ones synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent struct…
Universality of level spacing distributions in classical chaos
2007
Abstract We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limacon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian dis…