Search results for "Chaotic dynamics"

showing 10 items of 197 documents

Chaotic Cyclotron and Hall Trajectories Due to Spin-Orbit Coupling

2020

We demonstrate that the synergistic effect of a gauge field, Rashba spin-orbit coupling (SOC), and Zeeman splitting can generate chaotic cyclotron and Hall trajectories of particles. The physical origin of the chaotic behavior is that the SOC produces a spin-dependent (so-called anomalous) contribution to the particle velocity and the presence of Zeeman field reduces the number of integrals of motion. By using analytical and numerical arguments, we study the conditions of chaos emergence and report the dynamics both in the regular and chaotic regimes. {We observe the critical dependence of the dynamic patterns (such as the chaotic regime onset) on small variations in the initial conditions …

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsHall eectCyclotronChaoticGeneral Physics and AstronomyFOS: Physical sciencesLyapunov exponentSpin–orbit interactionchaotic trajectoriesNonlinear Sciences - Chaotic Dynamicslaw.inventionspin-orbit couplingNonlinear Sciences::Chaotic Dynamicssymbols.namesakelawHall effectanomalous velocitiesQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Lyapunov expo-nentssymbolsChaotic Dynamics (nlin.CD)Annalen der Physik
researchProduct

A quantum random walk of a Bose-Einstein condensate in momentum space

2016

Each step in a quantum random walk is typically understood to have two basic components: a ``coin toss'' which produces a random superposition of two states, and a displacement which moves each component of the superposition by different amounts. Here we suggest the realization of a walk in momentum space with a spinor Bose-Einstein condensate subject to a quantum ratchet realized with a pulsed, off-resonant optical lattice. By an appropriate choice of the lattice detuning, we show how the atomic momentum can be entangled with the internal spin states of the atoms. For the coin toss, we propose to use a microwave pulse to mix these internal states. We present experimental results showing an…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum dynamicsQuantum simulatorFOS: Physical sciencesNonlinear Sciences - Chaotic Dynamics01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum error correctionQuantum Gases (cond-mat.quant-gas)QubitQuantum mechanicsQuantum process0103 physical sciencesQuantum algorithmQuantum walkChaotic Dynamics (nlin.CD)010306 general physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

The Vlasov Limit for a System of Particles which Interact with a Wave Field

2008

In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.

PhysicsContinuum (measurement)Point particle010102 general mathematicsStatistical and Nonlinear Physics16. Peace & justice01 natural sciencesvlasov limitLaw of large numbers[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]0103 physical sciencesNewtonian fluid010307 mathematical physics0101 mathematicsComputingMilieux_MISCELLANEOUSMathematical PhysicsMathematical physicsCentral limit theoremCommunications in Mathematical Physics
researchProduct

Critical Attractor and Universality in a Renormalization Scheme for Three Frequency Hamiltonian Systems

1998

We study an approximate renormalization-group transformation to analyze the breakup of invariant tori for three degrees of freedom Hamiltonian systems. The scheme is implemented for the spiral mean torus. We find numerically that the critical surface is the stable manifold of a critical nonperiodic attractor. We compute scaling exponents associated with this fixed set, and find that they can be expected to be universal.

PhysicsCritical phenomenaGeneral Physics and AstronomyFOS: Physical sciencesTorusNonlinear Sciences - Chaotic DynamicsStable manifoldUniversality (dynamical systems)Hamiltonian systemRenormalizationAttractorChaotic Dynamics (nlin.CD)Critical exponentMathematics::Symplectic GeometryMathematical physics
researchProduct

Rich dynamics and anticontrol of extinction in a prey-predator system

2019

This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete sys…

PhysicsExtinctionPhase portraitApplied MathematicsMechanical EngineeringChaoticFOS: Physical sciencesAerospace EngineeringOcean EngineeringLyapunov exponentNonlinear Sciences - Chaotic Dynamics01 natural sciencesStrange nonchaotic attractorNonlinear Sciences::Chaotic Dynamicssymbols.namesakeControl and Systems EngineeringQuasiperiodic function0103 physical sciencesAttractorsymbolsStatistical physicsChaotic Dynamics (nlin.CD)Electrical and Electronic Engineering010301 acousticsBifurcation
researchProduct

Renormalization group approach to chaotic strings

2012

Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vacuum expectation value. A highly nontrivial and selfsimilar parameter dependence is found, produced by perturbative and nonperturbative effects, for which we develop a mathematical description in terms of suitable scaling functions. Our analytic results are in good agreement with numerical simulati…

PhysicsField (physics)General MathematicsApplied MathematicsChaoticGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsObservableRenormalization groupNonlinear Sciences - Chaotic DynamicsString (physics)Nonlinear Sciences::Chaotic DynamicsClassical mechanicsCoupling parameterStatistical physicsChaotic Dynamics (nlin.CD)Quantum fluctuationVacuum expectation value
researchProduct

Kolmogorov-Arnold-Moser–Renormalization-Group Analysis of Stability in Hamiltonian Flows

1997

We study the stability and breakup of invariant tori in Hamiltonian flows using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. We implement the scheme numerically for a family of Hamiltonians quadratic in the actions to analyze the strong coupling regime. We show that the KAM iteration converges up to the critical coupling at which the torus breaks up. Adding a renormalization consisting of a rescaling of phase space and a shift of resonances allows us to determine the critical coupling with higher accuracy. We determine a nontrivial fixed point and its universality properties.

PhysicsKolmogorov–Arnold–Moser theoremFOS: Physical sciencesGeneral Physics and AstronomyTorusRenormalization groupFixed pointNonlinear Sciences - Chaotic DynamicsUniversality (dynamical systems)Renormalizationsymbols.namesakeQuantum mechanicsPhase spacesymbolsChaotic Dynamics (nlin.CD)Hamiltonian (quantum mechanics)Mathematics::Symplectic GeometryMathematical physicsPhysical Review Letters
researchProduct

Relaxation, postponement, and features of the attractor in a driven varactor oscillator

1990

The driven varactor oscillator is investigated by numerical integration of its ODEs using the standard model of circuit theory. Attention is given to some properties of the basic relaxation mechanism. For time dependent amplitudes of the sinusoidal driving voltage the post-ponement of the bifurcations is characterized by transient Lyapunov numbers. The postponement of the first bifurcation shows the same dependence on the sweep velocity as in the case of the nonautonomous quadratic map. The shapes of the attractors are displayed in extended phase space. Generalized Renyi-dimensionsD 0 andD 1 have been determined in the chaotic region. A corresponding twodimensional Pioncare map indicates se…

PhysicsLyapunov functionDifferential equationMathematical analysisChaoticCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsNumerical integrationNonlinear Sciences::Chaotic Dynamicssymbols.namesakeAttractorsymbolsRelaxation (physics)General Materials ScienceTransient (oscillation)BifurcationZeitschrift f�r Physik B Condensed Matter
researchProduct

Cellular automaton for chimera states

2016

A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, ones synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent struct…

PhysicsMajority ruleCellular Automata and Lattice Gases (nlin.CG)General Physics and AstronomyFOS: Physical sciencesPattern Formation and Solitons (nlin.PS)Nonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Cellular Automata and Lattice Gases01 natural sciencesNonlinear Sciences - Pattern Formation and SolitonsCellular automatonNonlinear Sciences - Adaptation and Self-Organizing Systems010305 fluids & plasmasUniversality (dynamical systems)Chimera (genetics)Elementary cellular automaton0103 physical sciencesLagrangian coherent structuresStatistical physicsChaotic Dynamics (nlin.CD)010306 general physicsNonlinear Sciences - Cellular Automata and Lattice GasesAdaptation and Self-Organizing Systems (nlin.AO)
researchProduct

Universality of level spacing distributions in classical chaos

2007

Abstract We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limacon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian dis…

PhysicsMathematics::Dynamical SystemsChaoticFOS: Physical sciencesGeneral Physics and AstronomyLevel-spacing distributionNonlinear Sciences - Chaotic Dynamics01 natural sciencesClassical physicsDirac comb010305 fluids & plasmasUniversality (dynamical systems)Nonlinear Sciences::Chaotic Dynamicssymbols.namesakeCardioidQuantum mechanics0103 physical sciencessymbolsStatistical physicsChaotic Dynamics (nlin.CD)Dynamical billiards010306 general physicsRandom matrixPhysics Letters A
researchProduct