6533b85dfe1ef96bd12be97b

RESEARCH PRODUCT

Rich dynamics and anticontrol of extinction in a prey-predator system

Guanrong ChenNikolay KuznetsovNikolay KuznetsovMichal FečkanMichal FečkanMarius-f. Danca

subject

PhysicsExtinctionPhase portraitApplied MathematicsMechanical EngineeringChaoticFOS: Physical sciencesAerospace EngineeringOcean EngineeringLyapunov exponentNonlinear Sciences - Chaotic Dynamics01 natural sciencesStrange nonchaotic attractorNonlinear Sciences::Chaotic Dynamicssymbols.namesakeControl and Systems EngineeringQuasiperiodic function0103 physical sciencesAttractorsymbolsStatistical physicsChaotic Dynamics (nlin.CD)Electrical and Electronic Engineering010301 acousticsBifurcation

description

This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete systems, it is numerically found that, for some small parameter ranges, the system seemingly presents strange nonchaotic attractors. It is shown both analytically and by numerical simulations that the original system and the anticontrolled system undergo several Neimark-Sacker bifurcations. Beside the classical numerical tools for analyzing chaotic systems, such as phase portraits, time series and power spectral density, the 0-1 test is used to differentiate regular attractors from chaotic attractors.

10.1007/s11071-019-05272-3http://arxiv.org/abs/1910.00235