0000000000295243
AUTHOR
Michal Fečkan
Coupled Discrete Fractional-Order Logistic Maps
This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.
Looking More Closely at the Rabinovich-Fabrikant System
Recently, we looked more closely into the Rabinovich–Fabrikant system, after a decade of study [Danca & Chen, 2004], discovering some new characteristics such as cycling chaos, transient chaos, chaotic hidden attractors and a new kind of saddle-like attractor. In addition to extensive and accurate numerical analysis, on the assumptive existence of heteroclinic orbits, we provide a few of their approximations.
Rich dynamics and anticontrol of extinction in a prey-predator system
This paper reveals some new and rich dynamics of a two-dimensional prey-predator system and to anticontrol the extinction of one of the species. For a particular value of the bifurcation parameter, one of the system variable dynamics is going to extinct, while another remains chaotic. To prevent the extinction, a simple anticontrol algorithm is applied so that the system orbits can escape from the vanishing trap. As the bifurcation parameter increases, the system presents quasiperiodic, stable, chaotic and also hyperchaotic orbits. Some of the chaotic attractors are Kaplan-Yorke type, in the sense that the sum of its Lyapunov exponents is positive. Also, atypically for undriven discrete sys…
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
In this paper, a continuous approximation to studying a class of PWC systems of fractionalorder is presented. Some known results of set-valued analysis and differential inclusions are utilized. The example of a hyperchaotic PWC system of fractional order is analyzed. It is found that without equilibria, the system has hidden attractors.