Search results for "Chemical reaction"

showing 10 items of 196 documents

Theoretical insights in enzyme catalysis

2004

In this tutorial review we show how the methods and techniques of computational chemistry have been applied to the understanding of the physical basis of the rate enhancement of chemical reactions by enzymes. This is to answer the question: Why is the activation free energy in enzyme catalysed reactions smaller than the activation free energy observed in solution? Two important points of view are presented: Transition State (TS) theories and Michaelis Complex (MC) theories. After reviewing some of the most popular computational methods employed, we analyse two particular enzymatic reactions: the conversion of chorismate to prephenate catalysed by Bacillus subtilis chorismate mutase, and a m…

Models MolecularChemical PhenomenaStereochemistryCatechol O-MethyltransferaseChemical reactionCatalysisCatalysisEnzyme catalysisComputational chemistrychemistry.chemical_classificationbiologyChemistry PhysicalSubstrate (chemistry)Active siteGeneral ChemistryGeneral MedicineEnzymesSolutionsEnzymeModels Chemicalchemistrybiology.proteinChorismate mutaseThermodynamicsBacillus subtilisChorismate Mutase
researchProduct

Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: a QM/MM study

2019

AbstractCyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results show that the base-assisted mechanism is preferred over the substrat…

Models MolecularComposite ParticlesProtein ConformationPhysical ChemistryBiochemistry01 natural sciencesSubstrate Specificitychemistry.chemical_compoundPhosphorylationPost-Translational ModificationFree Energy0303 health sciencesMultidisciplinarybiologyKinasePhysicsQChemical ReactionsRChemistryReaction DynamicsPhysical SciencesThermodynamicsMedicineProtonsResearch ArticleChemical ElementsAtomsStereochemistryScienceMolecular Dynamics Simulation010402 general chemistryMolecular mechanicsReactantsQM/MMStructure-Activity Relationship03 medical and health sciencesCyclin-dependent kinaseParticle PhysicsNuclear PhysicsNucleons030304 developmental biologyChemical BondingCyclin-Dependent Kinase 2Cyclin-dependent kinase 2Biology and Life SciencesProteinsActive siteHydrogen BondingTransition StateBond order0104 chemical sciencesOxygenModels Chemicalchemistrybiology.proteinQuantum TheoryAdenosine triphosphate
researchProduct

Dynamic Effects on Reaction Rates in a Michael Addition Catalyzed by Chalcone Isomerase. Beyond the Frozen Environment Approach

2008

We present a detailed microscopic study of the dynamics of the Michael addition reaction leading from 6'-deoxychalcone to the corresponding flavanone. The reaction dynamics are analyzed for both the uncatalyzed reaction in aqueous solution and the reaction catalyzed by Chalcone Isomerase. By means of rare event simulations of trajectories started at the transition state, we have computed the transmission coefficients, obtaining 0.76 +/- 0.04 and 0.87 +/- 0.03, in water and in the enzyme, respectively. According to these simulations, the Michael addition can be seen as a formation of a new intramolecular carbon-oxygen bond accompanied by a charge transfer essentially taking place from the nu…

Models MolecularReaction ratesMechanicsBiochemistryChemical reactionCatalysisReaction coordinateReaction rateMolecular dynamicsCharge transferChalconesColloid and Surface ChemistryNucleophileComputational chemistryChemical reactionsFreezingIntramolecular LyasesReaction kineticsFourier AnalysisChemistryIntermolecular forceWaterGeneral ChemistryCarbonDynamicsKineticsModels ChemicalReaction dynamicsChemical physicsIntramolecular forceFlavanonesQuantum TheoryThermodynamicsIon exchangeJournal of the American Chemical Society
researchProduct

Chemistry and Photochemistry of 2,6-Bis(2-hydroxybenzilidene)cyclohexanone. An Example of a Compound Following the Anthocyanins Network of Chemical R…

2014

The kinetics and thermodynamics of the 2,6-bis(2-hydroxybenzilidene)cyclohexanone chemical reactions network was studied at different pH values using NMR, UV-vis, continuous irradiation, and flash photolysis. The chemical behavior of the system partially resembles anthocyanins and their analogue compounds. 2,6-Bis(2-hydroxybenzilidene)cyclohexanone exhibits a slow color change from yellow to red styrylflavylium under extreme acidic conditions. The rate constant for this process (5 × 10(-5) s(-1)) is pH independent and controlled by the cis-trans isomerization barrier. However, the interesting feature is the appearance of the colorless compound, 7,8-dihydro-6H-chromeno[3,2-d]xanthene, isolat…

Models MolecularXantheneMolecular StructureCyclohexanonesKineticsCyclohexanoneHydrogen-Ion ConcentrationPhotochemical ProcessesPhotochemistryChemical reactionAnthocyaninschemistry.chemical_compoundReaction rate constantchemistryBenzyl CompoundsProton NMRFlash photolysisPhysical and Theoretical Chemistryta116IsomerizationThe Journal of Physical Chemistry A
researchProduct

Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution

2020

Significance Magnetic resonance imaging is hindered by inherently low sensitivity, which limits the method for the most part to observing water molecules in the body. Hyperpolarized molecules exhibit strongly enhanced MRI signals which opens the door for imaging low-concentration species in vivo. Biomolecules can be hyperpolarized and injected into a patient allowing for metabolism to be tracked in real time, greatly expanding the information available to the radiologist. Parahydrogen-induced polarization (PHIP) is a hyperpolarization method renowned for its low cost and accessibility, but is generally limited by low polarization levels, modest molecular concentrations, and contamination by…

Molar concentrationparahydrogen02 engineering and technologyBiosensing Techniques010402 general chemistry01 natural sciencesChemical reaction41003 medical and health sciences0302 clinical medicineFumaratesHyperpolarization (physics)Carbon-13 Magnetic Resonance SpectroscopyPolarization (electrochemistry)DissolutionhyperpolarizationBiomarker; Hyperpolarization; Metabolism; MRI; Parahydrogen; Fumarates; Molecular Imaging; Solutions; Water; Biosensing Techniques; Carbon-13 Magnetic Resonance Spectroscopychemistry.chemical_classificationParahydrogenMultidisciplinaryAqueous solutionChemistryBiomolecule500WaterBiomarker021001 nanoscience & nanotechnologyCombinatorial chemistryMolecular Imaging0104 chemical sciencesSolutionsSolventChemistryHyperpolarizationMetabolism030220 oncology & carcinogenesisReagentPhysical Sciencesbiomarkerddc:5000210 nano-technologymetabolismBiosensorMRI
researchProduct

Transport properties of 2F = F2 in a temperature gradient as studied by molecular dynamics simulations

2007

International audience; We calculate transport properties of a reacting mixture of F and F2 from results of nonequilibrium molecular dynamics simulations. The reaction investigated is controlled by thermal diffusion and is close to local chemical equilibrium. The simulations show that a formulation of the transport problem in terms of classical non-equilibrium thermodynamics theory is sound. The chemical reaction has a large effect on the magnitude and temperature dependence of the thermal conductivity and the interdiffusion coefficient. The increase in the thermal conductivity in the presence of the chemical reaction, can be understood as a response to an imposed temperature gradient, whic…

Molecular ConformationGeneral Physics and AstronomyThermodynamics02 engineering and technology010402 general chemistryThermal diffusivity7. Clean energy01 natural sciencesChemical reaction[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]DiffusionMolecular dynamicsThermal conductivityComputer SimulationPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSChemistryEntropy productionThermal ConductivityFluorine021001 nanoscience & nanotechnology0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryTemperature gradient[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph][CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryModels Chemical13. Climate action[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryThermodynamics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Chemical equilibrium0210 nano-technologyStationary state
researchProduct

Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

2014

We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results …

Molecular dynamicsChemistryThermodynamic limitEnthalpyGeneral Physics and AstronomyParticleBinary numberThermodynamicsMolecular simulationPhysical and Theoretical ChemistryChemical equilibriumChemical reaction
researchProduct

Application of molecular topology for the prediction of the reaction times and yields under solvent-free conditions

2010

Ball milling and conventional magnetic stirring can be used to support different laboratory techniques with a highly efficient mixing of reagents under solvent-free conditions. By using multilinear regression and linear discriminant analysis, topological-mathematical models have been built to predict the yield and the reaction time for organocatalytic reactions, Suzuki reactions and reactions of synthesis of heterocyclic compounds. The results from the in silico predictions confirm the usefulness of the approach followed.

Multilinear mapSuzuki reactionChemistryComputational chemistryStereochemistryYield (chemistry)ReagentEnvironmental ChemistryLinear discriminant analysisPollutionChemical synthesisChemical reactionCatalysisGreen Chemistry
researchProduct

Surfactant-Dependent Exciton Mobility in Single-Walled Carbon Nanotubes Studied by Single-Molecule Reactions

2010

Measurements of stepwise photoluminescence quenching in individual, (n,m)-selected single-walled carbon nanotubes (SWCNTs) undergoing chemical reaction have been analyzed to deduce mobilities of optically generated excitons. For (7,5) nanotubes, the mean exciton range varies between approximately 140 and 240 nm for different surfactant coatings and correlates weakly with nanotube PL intensity. The results are consistent with a model of localized SWCNT excitons having substantial diffusional mobility along the nanotube axis.

NanotubeMaterials scienceLightSurface PropertiesExcitonMolecular ConformationSelective chemistry of single-walled nanotubesMolecular Probe TechniquesBioengineeringNanotechnologyCarbon nanotubeChemical reactionlaw.inventionSurface-Active AgentsCondensed Matter::Materials SciencePulmonary surfactantlawMaterials TestingNanotechnologyScattering RadiationMoleculeGeneral Materials ScienceParticle SizeNanotubes CarbonCondensed Matter::OtherMechanical EngineeringGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsOptical properties of carbon nanotubesChemical physicsLuminescent MeasurementsCrystallizationNano Letters
researchProduct

The potential of cirrus clouds for heterogeneous chlorine activation

1996

The ER-2 data from ascents and descents through layers of cirrus clouds are utilized to study the heterogeneous reactions of ClONO 2 with H 2 O, of HOCl and ClONO 2 with HCl, and their potential role for the activation of chlorine in the tropopause regions which could affect ozone there. Lacking measured data for the three chlorine containing molecules their abundances as a function of altitude have been calculated from a 2D model. The aerosol surface data measured by a Forward Scattering Spectrometer Probe (FSSP-300) on the ER-2 were corrected for the expected asphericity of cirrus cloud particles by means of a T-matrix method. The results indicate considerable potential of cirrus clouds f…

OzoneMeteorologyForward scatterAnalytical chemistrychemistry.chemical_elementChemical reactionAerosolReaction ratechemistry.chemical_compoundGeophysicschemistryChlorineGeneral Earth and Planetary SciencesCirrusTropopauseGeophysical Research Letters
researchProduct