Search results for "Chlamydomonas"

showing 10 items of 43 documents

Structural and functional characterization of a transcription-enhancing sequence element in the rbcL gene of the Chlamydomonas chloroplast genome.

2002

The structure and function of a transcription-enhancing sequence element in the coding region of the Chlamydomonas reinhardtii rbcL gene was analyzed in Chlamydomonas chloroplast transformants in vivo. The enhancer sequence is contained within a DNA segment extending from position +108 to position +143, relative to the start site of rbcL gene transcription. The sequence remains functional when inverted or when placed 34 bp closer to or 87 bp further downstream of the basic rbcL promoter. However, it does not function from a site about 250 bp downstream of its original location. Besides promoting transcription initiation from the rbcL promoter, the element is able to augment transcription fr…

GeneticsChloroplastsbiologyRibulose-Bisphosphate CarboxylaseChlamydomonasResponse elementChlamydomonasPromoterGeneral Medicinebiology.organism_classificationGenomeEnhancer Elements GeneticTranscription (biology)GeneticsCoding regionAnimalsEnhancerPromoter Regions GeneticGenePlant ProteinsCurrent genetics
researchProduct

Response of Chlamydomonas reinhardtii to Herbicides: Negative Relationship Between Toxicity and Water Solubility Across Several Herbicide Families

2002

International audience

[SDE] Environmental SciencesCHLAMYDOMONAS REINHARDITII0106 biological sciences[SDV]Life Sciences [q-bio]Health Toxicology and MutagenesisChlamydomonas reinhardtiiChlorophyceaeChlorophyta010501 environmental sciencesBiologyToxicology01 natural sciencesBotanyAnimalsEcotoxicologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesAqueous solutionHerbicidesGeneral MedicinePesticidebiology.organism_classificationPollution[SDV] Life Sciences [q-bio]Solubility[SDE]Environmental SciencesToxicityPhytotoxicityChlamydomonas reinhardtiiWater Pollutants Chemical010606 plant biology & botanyBulletin of Environmental Contamination and Toxicology
researchProduct

Novel atrazine-binding biomimetics inspired to the D1 protein from the photosystem II of Chlamydomonas reinhardtii.

2020

Biomimetic design represents an emerging field for improving knowledge of natural molecules, as well as to project novel artificial tools with specific functions for biosensing. Effective strategies have been exploited to design artificial bioreceptors, taking inspiration from complex supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of chemical species at the molecular scale. Herein, a novel biomimetic peptide enabling herbicide binding was designed bioinspired to the D1 protein of the Photosystem II of the green alga Chlamydomonas reinhardtii. The D1…

Circular dichroismPhotosystem IIProtein ConformationSupramolecular chemistryPlastoquinoneChlamydomonas reinhardtiiPeptide02 engineering and technologyMolecular Dynamics SimulationBiochemistryFluorescence spectroscopy03 medical and health scienceschemistry.chemical_compoundStructural BiologyBiomimeticsAmino Acid SequencePhotosynthesisMolecular Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyRational designphotosystem IIPhotosystem II Protein ComplexGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationSpectrometry FluorescencechemistryArtificial peptides Atrazine sensing Rational designBiophysicsThermodynamicsAtrazine0210 nano-technologyPeptidesChlamydomonas reinhardtiiInternational journal of biological macromolecules
researchProduct

The Chlamydomonas genome reveals the evolution of key animal and plant functions

2007

Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…

0106 biological sciencesMESH: Sequence Analysis DNAMESH: Algal ProteinsChloroplastsProteomeMESH: PlantsChlamydomonas reinhardtii01 natural sciencesGenomeMESH: Membrane Transport ProteinsDNA AlgalMESH: DNA AlgalMESH: AnimalsGoniumPhotosynthesisMESH: PhylogenyMESH: PhotosynthesisPhylogenyGenetics0303 health sciencesGenomeMultidisciplinarybiologyMESH: Genomicsfood and beveragesGenomicsPlantsBiological EvolutionMESH: Genes[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH: ProteomeFlagellaMultigene FamilyMESH: Computational BiologyMESH: Chlamydomonas reinhardtiiNuclear geneMolecular Sequence Data[SDV.BC]Life Sciences [q-bio]/Cellular BiologyFlagellumMESH: FlagellaArticle03 medical and health sciencesIntraflagellar transportMESH: EvolutionAnimalsMESH: Genome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Gene[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyMESH: Molecular Sequence DataMESH: ChloroplastsAlgal ProteinsChlamydomonasComputational BiologyMembrane Transport ProteinsSequence Analysis DNAbiology.organism_classificationGenesMESH: Multigene FamilyChlamydomonas reinhardtii010606 plant biology & botany
researchProduct

Specific sequence elements in the 5′ untranslated regions of rbcL and atpB gene mRNAs stabilize transcripts in the chloroplast of Chlamydomonas reinh…

2001

Using a series of point mutations in chimeric reporter gene constructs consisting of the 5' regions of the Chlamydomonas chloroplast rbcL or atpB genes fused 5' to the coding sequence of the bacterial uidA (GUS) gene, RNA-stabilizing sequence elements were identified in vivo in the 5' untranslated regions (5' UTRs) of transcripts of the chloroplast genes rbcL and atpB in Chlamydomonas reinhardtii. In chimeric rbcL 5' UTR:GUS transcripts, replacement of single nucleotides in the 10-nt sequence 5'-AUUUCCGGAC-3', extending from positions +38 to +47 relative to the transcripts' 5' terminus, shortened transcript longevity and led to a reduction in transcript abundance of more than 95%. A similar…

Untranslated regionChloroplastsLightMolecular Sequence DataChlamydomonas reinhardtiiNucleic acid secondary structureAnimalsCoding regionRNA MessengerMolecular BiologyGeneGeneticsReporter geneBase SequencebiologyChlamydomonasRNADarknessbiology.organism_classificationMolecular biologyGenes BacterialMutagenesisNucleic Acid Conformation5' Untranslated RegionsChlamydomonas reinhardtiiResearch ArticleRNA
researchProduct

Plant protein phosphorylation monitored by capillary liquid chromatography–element mass spectrometry

2007

Abstract Many essential cellular functions such as growth rate, motility, and metabolic activity are linked to reversible protein phosphorylation, since they are controlled by signaling cascades based mainly on phosphorylation/dephosphorylation events. Quantification of global or site-specific protein phosphorylation is not straightforward with standard proteomic techniques. The coupling of capillary liquid chromatography (μLC) with ICP-MS (inductively coupled plasma-mass spectrometry) is a method which allows a quantitative screening of protein extracts for their phosphorus and sulfur content, and thus provides access to the protein phosphorylation degree. In extension of a recent pilot st…

ProteomicsPhosphataseArabidopsisProtozoan ProteinsBiophysicsChlamydomonas reinhardtiimacromolecular substancesBiologyProteomicsBiochemistryMass SpectrometryDephosphorylationMiceAnimalsProtein phosphorylationPhosphorylationMolecular BiologyCells CulturedPlant ProteinsChromatographyArabidopsis ProteinsPhosphorusCell BiologyPhosphoproteinsbiology.organism_classificationPeptide FragmentsBiochemistryPlant proteinPhosphoproteinPhosphorylationChlamydomonas reinhardtiiSulfurChromatography LiquidBiochemical and Biophysical Research Communications
researchProduct

C172S Substitution in the Chloroplast-encoded Large Subunit Affects Stability and Stress-induced Turnover of Ribulose-1,5-bisphosphate Carboxylase/Ox…

1999

Previous work has indicated that the turnover of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1. 39) may be controlled by the redox state of certain cysteine residues. To test this hypothesis, directed mutagenesis and chloroplast transformation were employed to create a C172S substitution in the Rubisco large subunit of the green alga Chlamydomonas reinhardtii. The C172S mutant strain was not substantially different from the wild type with respect to growth rate, and the purified mutant enzyme had a normal circular dichroism spectrum. However, the mutant enzyme was inactivated faster than the wild-type enzyme at 40 and 50 degrees C. In contrast, C172S mutant …

OxygenaseChloroplastsProtein ConformationRibulose-Bisphosphate CarboxylaseMutantChlamydomonas reinhardtiiBiochemistrychemistry.chemical_compoundEnzyme StabilitySerineAnimalsCysteineMolecular BiologyCysteine metabolismRibulose 15-bisphosphatebiologyCircular DichroismRuBisCOWild typeCell Biologybiology.organism_classificationChloroplastPhenotypeAmino Acid SubstitutionchemistryBiochemistryMutagenesis Site-Directedbiology.proteinSpectrophotometry UltravioletOxidation-ReductionChlamydomonas reinhardtiiJournal of Biological Chemistry
researchProduct

Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii    

2005

Abstract The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additiona…

GeneticsbiologyPhysiologyMutantChlamydomonas reinhardtiiPlant Sciencebiology.organism_classificationIsozymeGenomechemistry.chemical_compoundchemistryChlorophyllCodon usage biasGeneticsGeneFunction (biology)Plant Physiology
researchProduct

The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

2008

We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The …

DNA RepairRetroelementsPhyscomitrellaArabidopsisPhyscomitrella patensGenes PlantGenomeMagnoliopsidaPhylogeneticsGene DuplicationGene familyAnimalsGenePhylogenyPlant ProteinsRepetitive Sequences Nucleic AcidGeneticsWhole genome sequencingMultidisciplinarybiologyDehydrationfood and beveragesComputational BiologyOryzaSequence Analysis DNAbiology.organism_classificationAdaptation PhysiologicalBiological EvolutionBryopsidaMulticellular organismMultigene FamilyChlamydomonas reinhardtiiGenome PlantMetabolic Networks and PathwaysSignal Transduction
researchProduct

Structural and functional consequences of the replacement of proximal residues Cys172 and Cys192 in the large subunit of ribulose-1,5-bisphosphate ca…

2008

Proximal Cys(172) and Cys(192) in the large subunit of the photosynthetic enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) are evolutionarily conserved among cyanobacteria, algae and higher plants. Mutation of Cys(172) has been shown to affect the redox properties of Rubisco in vitro and to delay the degradation of the enzyme in vivo under stress conditions. Here, we report the effect of the replacement of Cys(172) and Cys(192) by serine on the catalytic properties, thermostability and three-dimensional structure of Chlamydomonas reinhardtii Rubisco. The most striking effect of the C172S substitution was an 11% increase in the specificity factor when compared wi…

Models Molecularinorganic chemicalsOxygenaseRibulose-Bisphosphate CarboxylaseProtein subunitSpecificity factorChlamydomonas reinhardtiiCrystallography X-RayBiochemistryCatalysischemistry.chemical_compoundEnzyme StabilityAnimalsCysteineMolecular BiologyBinding SitesRibulose 15-bisphosphatebiologyfungiRuBisCOTemperaturefood and beveragesCell Biologybiology.organism_classificationLyaseMolecular biologyProtein Structure TertiaryPyruvate carboxylaseKineticsProtein SubunitsBiochemistrychemistryMutationbiology.proteinChlamydomonas reinhardtiiBiochemical Journal
researchProduct