Search results for "Chromatin and Epigenetics"
showing 8 items of 18 documents
MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib
2014
The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both pr…
Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes inSaccharomyces cerevisiae
2016
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 …
The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4
2019
Abstract Co-transcriptional imprinting of mRNA by Rpb4 and Rpb7 subunits of RNA polymerase II (RNAPII) and by the Ccr4–Not complex conditions its post-transcriptional fate. In turn, mRNA degradation factors like Xrn1 are able to influence RNAPII-dependent transcription, making a feedback loop that contributes to mRNA homeostasis. In this work, we have used repressible yeast GAL genes to perform accurate measurements of transcription and mRNA degradation in a set of mutants. This genetic analysis uncovered a link from mRNA decay to transcription elongation. We combined this experimental approach with computational multi-agent modelling and tested different possibilities of Xrn1 and Ccr4 acti…
The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors.
2010
In order to study the intragenic profiles of active transcription, we determined the relative levels of active RNA polymerase II present at the 3'- and 5'-ends of 261 yeast genes by run-on. The results obtained indicate that the 3'/5' run-on ratio varies among the genes studied by over 12 log(2) units. This ratio seems to be an intrinsic characteristic of each transcriptional unit and does not significantly correlate with gene length, G + C content or level of expression. The correlation between the 3'/5' RNA polymerase II ratios measured by run-on and those obtained by chromatin immunoprecipitation is poor, although the genes encoding ribosomal proteins present exceptionally low ratios in …
Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle
2015
The particular behaviour of eukaryotic RNA polymerases along different gene regions and amongst distinct gene functional groups is not totally understood. To cast light onto the alternative active or backtracking states of RNA polymerase II, we have quantitatively mapped active RNA polymerases at a high resolution following a new biotin-based genomic run-on (BioGRO) technique. Compared with conventional profiling with chromatin immunoprecipitation, the analysis of the BioGRO profiles in Saccharomyces cerevisiae shows that RNA polymerase II has unique activity profiles at both gene ends, which are highly dependent on positioned nucleosomes. This is the first demonstration of the in vivo infl…
Promoter activity of the sea urchin (Paracentrotus lividus) nucleosomal H3 and H2A and linker H1 a-histone genes is modulated by enhancer and chromat…
2009
Core promoters and chromatin insulators are key regulatory elements that may direct a transcriptional enhancer to prefer a specific promoter in complex genetic loci. Enhancer and insulator flank the sea urchin (Paracentrotus lividus) alpha-histone H2A transcription unit in a tandem repeated cluster containing the five histone genes. This article deals with the specificity of interaction between the H2A enhancer-bound MBF-1 activator and histone gene promoters, and with the mechanism that leads the H1 transcripts to peak at about one-third of the value for nucleosomal H3 and H2A mRNAs. To this end, in vivo competition assays of enhancer and insulator functions were performed. Our evidence su…
Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance.
2016
Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of C…
Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity
2014
Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regul…