6533b855fe1ef96bd12b0026

RESEARCH PRODUCT

Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance.

Manuela PorruBruno PaganoEric GilsonChiara CingolaniAnnamaria BiroccioAntonio RandazzoEttore NovellinoSimona ArtusoAntonella StoppacciaroJussara AmatoPasquale ZizzaCarmen D'angeloErica SalvatiAngela Maria RizzoGiorgio StassiCarlo Leonetti

subject

cancer stem cells0301 basic medicineDNA damageSettore BIO/11 - Biologia MolecolareTumor initiationBiologyG-quadruplex03 medical and health sciencesCancer stem cellAntigens CDCell Line TumorG-QuadruplexeGeneticsHumansNeoplasm InvasivenessAC133 AntigenGeneGlycoproteinsCell ProliferationSettore MED/04 - Patologia GeneraleNeoplasm InvasiveneG-quadruplexProtein BiosynthesiDrug discoveryGene regulation Chromatin and EpigeneticsAlternative splicingIntroncd133Molecular biologyG-QuadruplexesGene Expression Regulation Neoplastic030104 developmental biologyCell Transformation NeoplasticDrug Resistance NeoplasmProtein BiosynthesisPeptideNeoplastic Stem CellsCancer researchNeoplastic Stem CellSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioGlycoproteinPeptidesHuman

description

Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression. In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.

http://europepmc.org/abstract/med/26511095