Search results for "Clarke"

showing 7 items of 7 documents

La mappa di Clarke: l'altra storia di 2001

2009

Il saggio ripercorre la genesi di "2001: A Space Odissey": da un lato il film di Stanley Kubrick, dall'altro il romanzo di Arthur C. Clarke. Queste due odissee respingono le etichette: né adattamento, né novellizzazione, ma uno strano parto gemellare. Nei parti gemellari, è noto, il maggiore cede il passo al minore, ma resta pur sempre il primogenito. E il primogenito nel nostro caso - un'attenta rilettura delle fonti lo dimostra - è il romanzo.

Clarke Kubrick Novellizzazione
researchProduct

Contribution to variational analysis : stability of tangent and normal cones and convexity of Chebyshev sets

2014

The aim of this thesis is to study the following three problems: 1) We are concerned with the behavior of normal cones and subdifferentials with respect to two types of convergence of sets and functions: Mosco and Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials. The results obtained can be seen as extensions of Attouch theorem to the context of non-convex functions on locally uniformly convex Banach space. 2) For a given bornology β on a Banach space X we are interested in the validity of the following "lim inf" formula (…).Here Tβ(C; x) and Tc(C; x) denote the β-tangent cone and the Clarke tangent cone to …

Contingent coneCône tangent de BouligandSuite minimisanteFonctions sous-régulières cône normal (tangent) de ClarkeClarke tangent (normal) coneMetric projection[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Chebyshev setMosco (Attouch-Wets) convergenceAsplund spaceCône normal proximalProjection metriqueEnsemble de ChebyshevConvergence au sens de Mosco (d'Attouch-Wets)Subsmooth sets (functions)BornologyBornologieMinimizing sequenceProximal normal coneFréchet (Mordukhovich limiting) subdifferentialEspace d'AsplundTrustworthinessSous-différentiel de Fréchet (de Mordukhovich)Ensembles sous-réguliers
researchProduct

Regularization of perturbed state-dependent sweeping processes with nonregular sets

2018

International audience; In this paper, we prove the convergence strongly pointwisely (up to a subsequence) of Moreau-Yosida regularization of perturbed state-dependent sweeping process with nonregular (subsmooth and positively alpha-far) sets in separable Hilbert spaces. Some relevant consequences are indicated.

Positively alpha-far sets[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]MSC: 34A60 49J52 34G25 49J53Moreau-Yosida regularizationDifferential inclusions[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Subsmooth setsSweeping processClarke normal cone
researchProduct

Characterization of the Clarke regularity of subanalytic sets

2017

International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ MATH ] Mathematics [math]Computer Science::Computer Science and Game Theory021103 operations researchSubanalytic setTangent coneApplied MathematicsGeneral Mathematics010102 general mathematicsTangent coneMathematical analysis0211 other engineering and technologiesSubanalytic sets02 engineering and technologyCharacterization (mathematics)16. Peace & justice01 natural sciencesMSC: Primary 49J52 46N10 58C20; Secondary 34A60Clarke regularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

Differential inclusions involving normal cones of nonregular sets in Hilbert spaces

2017

This thesis is dedicated to the study of differential inclusions involving normal cones of nonregular sets in Hilbert spaces. In particular, we are interested in the sweeping process and its variants. The sweeping process is a constrained differential inclusion involving normal cones which appears naturally in several applications such as elastoplasticity, electrical circuits, hysteresis, crowd motion, etc.This work is divided conceptually in three parts: Study of positively alpha-far sets, existence results for differential inclusions involving normal cones and characterizations of Lyapunov pairs for the sweeping process. In the first part (Chapter 2), we investigate the class of positivel…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]cône normalMoreau-Yosida regularizationcono normalmétodo de tipo Galerkinfonction distanceGalerkin-like methodMSC: 34A60 49J52 34G25 49J53 34B10 93D30subdiferencial de Clarkeprocessus de rafleInclusión diferencialensembles positivement alpha-far'sweeping processfonctions de Lyapunovsous-différentiel de Clarkeprocesos de arrastrefunción distanciaLyapunov functionsconjuntos positivamente alpha-farFunciones de Lyapunovméthode de type Galerkinrégularisation de Moreau-YosidaDifferential inclusions[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Clarke subdifferentialregularización de Moreau-YosidaDistance functionInclusion différentielle[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Normal conepositively alpha-far sets
researchProduct

Confession à l'irlandaise

2006

[SHS.LITT] Humanities and Social Sciences/Literature[SHS.LITT]Humanities and Social Sciences/LiteraturePatrick KavanaghLittérature irlandaise contemporaineAustin ClarkeFrank O'Connordictature spirituelle[ SHS.LITT ] Humanities and Social Sciences/LiteratureSean O'Faolainconfession
researchProduct

Susanna Clarke: Piranesi

2021

Kirja-arvostelu teoksesta Susanna Clarke: Piranesi (WSOY, 2021) Suom. Helene Bützow. 261 s. nonPeerReviewed

kirja-arvostelutClarke SusannafantasiakirjallisuusPiranesi
researchProduct