Search results for "Cocharacters"
showing 4 items of 4 documents
Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths
2022
Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…
Group graded algebras and multiplicities bounded by a constant
2013
AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.
Gradings on the algebra of upper triangular matrices of size three
2013
Abstract Let UT 3 ( F ) be the algebra of 3 × 3 upper triangular matrices over a field F . On UT 3 ( F ) , up to isomorphism, there are at most five non-trivial elementary gradings and we study the graded polynomial identities for such gradings. In case F is of characteristic zero we give a complete description of the space of multilinear graded identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . We finally compute the multiplicities in the graded cocharacter sequence for every elementary G -grading on UT 3 ( F ) .
On multiplicities of cocharacters for algebras with superinvolution
2021
Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.