Search results for "Cognit"

showing 10 items of 15244 documents

Transnational bodies: Embodiment of transnational settings

2016

AbstractThe everyday life of more and more people is characterized by transnationalism. People increasingly interact across borders and in a network of transnational relationships. While interactions may be border-crossing, the actors’ body remains situated and limited in time and space. However, the thesis of this paper is that transnationalism processes are embodied. Thus, we speak of an embodiment of transnational settings. We focus on symbolic interactionism – Charles H. Cooley and George H. Mead in particular provide a large repertoire of concepts – to theoretically conceive transnational bodies. To show how transnational embodiment can manifest itself we use the example of young peopl…

010405 organic chemistrymedia_common.quotation_subjectRepertoire05 social sciences0507 social and economic geographyMedia studiesGender studiesBody remainsSymbolic interactionism01 natural sciences0104 chemical sciencesEmbodied cognitionBeautySituatedTransnationalismSociologyEveryday life050703 geographymedia_commonTransnational Social Review
researchProduct

Optimized Class-Separability in Hyperspectral Images

2016

International audience; Image visualization techniques are mostly based on three bands as RGB color composite channels for human eye to characterize the scene. This, however, is not effective in case of hyper-spectral images (HSI) because they contain dozens of informative spectral bands. To eliminate redundancy of spectral information among these bands, dimensionality reduction (DR) is applied while at the same trying to retain maximum information. In this paper, we propose a new method of information-preserved hyper-spectral satellite image visualization that is based on fusion of unsupervised band selection techniques and color matching function (CMF) stretching. The results show consist…

010504 meteorology & atmospheric sciencesBand SelectionComputer science0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesTransformation[SPI]Engineering Sciences [physics][ SPI.NRJ ] Engineering Sciences [physics]/Electric powerDisplay[ SPI ] Engineering Sciences [physics]Computer visionclass separabilityFusion021101 geological & geomatics engineering0105 earth and related environmental sciencesColor imagebusiness.industry[SPI.NRJ]Engineering Sciences [physics]/Electric powerHyperspectral imagingPattern recognition[ SDU.STU ] Sciences of the Universe [physics]/Earth SciencesImage segmentationSpectral bandsDimensionality reductionVisualization[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsImaging spectroscopyFull spectral imagingRGB color modelArtificial intelligencehyper-spectral image visualizationbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Estimating Missing Information by Cluster Analysis and Normalized Convolution

2018

International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.

010504 meteorology & atmospheric sciencesComputer sciencemedia_common.quotation_subjectReal-time computingEnergy Engineering and Power Technology02 engineering and technologyIterative reconstructionsmart city dealsCluster (spacecraft)01 natural sciencesIndustrial and Manufacturing Engineeringnormalized convolutionstandard clustering technique[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]ConvolutionArtificial IntelligenceSmart city11. Sustainability0202 electrical engineering electronic engineering information engineeringLimit (mathematics)SimplicityCluster analysisInstrumentationad-hoc sensors0105 earth and related environmental sciencesmedia_commonSettore INF/01 - InformaticaRenewable Energy Sustainability and the EnvironmentComputer Science Applications1707 Computer Vision and Pattern Recognitionenvironmental informationmissing informationComputer Networks and CommunicationKernel (image processing)020201 artificial intelligence & image processingcluster analysis2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

SAR Image Classification Combining Structural and Statistical Methods

2011

The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…

010504 meteorology & atmospheric sciencesContextual image classificationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)Pattern recognition02 engineering and technology01 natural sciencesFractal dimensionImage (mathematics)Range (mathematics)Matrix (mathematics)Fractal[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceVariogrambusinessComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMathematics
researchProduct

Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis

2015

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to p…

010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesRelative spectral alignment02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesCross-sensorCanonical correlation analysis1706 Computer Science Applications910 Geography & travelComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsGround truthbusiness.industry1903 Computers in Earth SciencesKernel methodsPattern recognitionReal imageAtomic and Molecular Physics and OpticsComputer Science Applications10122 Institute of GeographyTransformation (function)Kernel methodChange detectionFeature extraction2201 Engineering (miscellaneous)Artificial intelligencebusinessCanonical correlationChange detectionCurse of dimensionalityISPRS Journal of Photogrammetry and Remote Sensing
researchProduct