Search results for "Coloring Agent"
showing 10 items of 119 documents
Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers …
1992
Abstract Fluorescence microscopy has recently been proven to be an ideal tool to investigated the specific interaction of phospholipase A 2 with oriented substrate monolayers. Using a dual labeling technique, it could be shown that phospholipase A 2 can specifically attack and hydrolyze solid analogous l -α-DPPC domains. After a critical extent of monolayer hydrolysis the enzyme itself starts to aggregate forming regular shaped protein domains (Grainger et al. (1990) Biochim. Biophys. Acta 1023. 365–379). In order to confirm that the existence of hydrolysis products in the mononlayer is necessary for the observed aggregation of phospholipase A 2 , mixed monolayers of d - and l -α-DPPC, l -α…
Polycationic Monomeric and Homodimeric Asymmetric Monomethine Cyanine Dyes with Hydroxypropyl Functionality—Strong Affinity Nucleic Acids Binders
2021
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities to all examined DNA ds-polynucleotides and poly rA–poly rU. The compounds studied showed selectivity towards GC-DNA base pairs over AT-DNA, which included both binding affinity and a strong fluorescence response. CD titrations showed aggregation along the polynucleotide with well-defined supramolecular chirality. The single dipyridinium-bridged dimer showed intercalatio…
Light and electron microscopical demonstration of methylene blue accumulation sites in taste buds of fish and mouse after supravital dye injection
1995
Electron microscopical data regarding methylene blue staining of taste buds in the epithelia of the goldfish lip and the cirumvallate papilla of the mouse tongue after supravital dye application are presented for the first time. The ultrastructural details were compared with the corresponding light microscopical findings. The dye was applied in different concentrations by injection or in crystalline from directly to the surface of the tissues. Both methylene blue and tissue were simultaneously fixed by immersion in a paraformaldehyde-glutaraldehyde solution with the addition of phosphomolybdic acid. The ensuing dye precipitate was further stabilized by ammonium heptamolybdate. On the light …
Towards chemical communication between gated nanoparticles.
2014
The design of comparatively simple and modularly configurable artificial systems able to communicate through the exchange of chemical messengers is, to the best of our knowledge, an unexplored field. As a proof-of-concept, we present here a family of nanoparticles that have been designed to communicate with one another in a hierarchical manner. The concept involves the use of capped mesoporous silica supports in which the messenger delivered by a first type of gated nanoparticle is used to open a second type of nanoparticle, which delivers another messenger that opens a third group of gated nanoobjects.We believe that the conceptual idea that nanodevices can be designed to communicate with …
Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions.
2001
The photocatalytic degradation of the anthraquinonic dye Acid Blue 80 in aqueous solutions containing TiO2 dispersions has been investigated. The process has been monitored by following either the disappearance of the dye (via HPLC) and the formation of its end-products (via IC, GC, and TOC analysis). Although a relatively fast decolorization of the solutions has been observed, the mineralization is slower, and the presence of residual organic compounds was evidenced even after long term irradiation, confirming the relevant stability of anthraquinone derivatives. The identification of various unstable intermedi ates formed after low irradiation times was performed by HPLC-MS, allowing us to…
Hemin-coupled iron(III)-hydroxide nanoparticles show increased uptake in Caco-2 cells
2011
Abstract Objectives The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and ferrous iron but not ferric iron is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. In iron(III)-hydroxide nanoparticles hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by a solubilising carbohydrate shell, yet bioavailability from such particles is insufficient when compared with ferrous salts. To increase their intestinal uptake iron(III)-hydroxide nanoparticles …
The concentration of para-phenylenediamine (PPD) for routine patch testing in a standard series needs to be redefined
2005
Supramolecular organic-inorganic hybrid assemblies with tunable particle size: interplay of three noncovalent interactions.
2013
Polarization microscopy as a tool for quantitative evaluation of collagen using picrosirius red in different stages of CKD in cats
2016
Chronic kidney disease (CKD) is a relevant disease in feline clinic. The tubulointerstitial damage, with collagen deposition and fibrosis, is an important result of this process. The aim of this study was to quantify and correlate the deposition of collagen and severity of interstitial fibrosis (IF) in the kidney from cats in different stages of CKD. Kidney fragments from 10 adult cats with CKD were analyzed and stained by Masson's trichrome (MT) and Picrosirius red (PSR) for circular polarized microscopy. Random quantitative analysis was performed on MT sections to classify the degree of IF, per field area, with and without circular polarization. Statistics correlations were performed by S…
Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles
2010
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…