Search results for "Community detection"
showing 10 items of 16 documents
Gene-based and semantic structure of the Gene Ontology as a complex network
2012
The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. This approach might be usefully complemented by a bottom-up approach based on the knowledge of relationships amongst genes. To this end, we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium and a gene-based …
Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis
2023
Publisher Copyright: Author The human brain can be described as a complex network of functional connections between distinct regions, referred to as the brain functional network. Recent studies show that the functional network is a dynamic process and its community structure evolves with time during continuous task performance. Consequently, it is important for the understanding of the human brain to develop dynamic community detection techniques for such time-varying functional networks. Here, we propose a temporal clustering framework based on a set of network generative models and surprisingly it can be linked to Block Component Analysis to detect and track the latent community structure…
Algorithms for Graph and Network Analysis: Clustering and Search of Motifs in Graphs
2019
In this article we deal with problems that involve the analysis of topology in graphs modeling biological networks. In particular, we consider two important problems: (i) Network clustering, aiming at finding compact subgraphs inside the input graph in order to isolate molecular complexes, and (ii) searching for motifs, i.e., sub-structures repeated in the input network and presenting high significance (e.g., in terms of their frequency). We provide a compact overview of the main techniques proposed in the literature to solve these problems.
Evaluation of Structural and Temporal Properties of Ego Networks for Data Availability in DOSNs
2017
The large diffusion of Online Social Networks (OSNs) has influenced the way people interact with each other. OSNs present several drawbacks, one of the most important is the problem of privacy disclosures. Distributed Online Social Networks (DOSNs) have been proposed as a valid alternative solution to solve this problem. DOSNs are Online Social Networks implemented on a distributed platform, such as a P2P system or a mobile network. However, the decentralization of the control presents several challenges, one of the main ones is guaranteeing data availability without relying on a central server. To this aim, users’ data allocation strategies have to be defined and this requires the knowledg…
Core of communities in bipartite networks
2017
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Ran…
Multi-scale analysis of the European airspace using network community detection
2014
We show that the European airspace can be represented as a multi-scale traffic network whose nodes are airports, sectors, or navigation points and links are defined and weighted according to the traffic of flights between the nodes. By using a unique database of the air traffic in the European airspace, we investigate the architecture of these networks with a special emphasis on their community structure. We propose that unsupervised network community detection algorithms can be used to monitor the current use of the airspaces and improve it by guiding the design of new ones. Specifically, we compare the performance of three community detection algorithms, also by using a null model which t…
Qualitative Comparison of Community Detection Algorithms
2011
Community detection is a very active field in complex networks analysis, consisting in identifying groups of nodes more densely interconnected relatively to the rest of the network. The existing algorithms are usually tested and compared on real-world and artificial networks, their performance being assessed through some partition similarity measure. However, artificial networks realism can be questioned, and the appropriateness of those measures is not obvious. In this study, we take advantage of recent advances concerning the characterization of community structures to tackle these questions. We first generate networks thanks to the most realistic model available to date. Their analysis r…
Towards realistic artificial benchmark for community detection algorithms evaluation
2013
Many algorithms have been proposed for revealing the community structure in complex networks. Tests under a wide range of realistic conditions must be performed in order to select the most appropriate for a particular application. Artificially generated networks are often used for this purpose. The most realistic generative method to date has been proposed by Lancichinetti, Fortunato and Radicchi (LFR). However, it does not produce networks with some typical features of real-world networks. To overcome this drawback, we investigate two alternative modifications of this algorithm. Experimental results show that in both cases, centralisation and degree correlation values of generated networks…
Image Segmentation by Deep Community Detection Approach
2017
International audience; To address the problem of segmenting an image into homogeneous communities this paper proposes an efficient algorithm to detect deep communities in the image by maximizing at each stage a new centrality measure, called the local Fiedler vector centrality (LFVC). This measure is associated with the sensitivity of algebraic connectivity to node removals. We show that a greedy node removal strategy, based on iterative maximization of LFVC, has bounded performance loss relative to the optimal, but intractable, combinatorial batch removal strategy. A remarkable feature of this method is the ability to segments the image automatically into homogeneous regions by maximizing…
Studying micro-communities in Facebook Communities
2018
In the visionary view of the future Internet, named the Next Generation Internet, a current idea is to have a user-centric approach where human behavior models will be used to define the networks or to manage services. During the last years, a great trend in current Social Media platforms is to offer the opportunity to establish and join groups of people online. Despite human behaviour in current Online Social Media have been studied in depth, characteristics of these aggregations of people in content-based communities are still unknown. In this paper, we propose an evaluation of micro-communities of users inside the big network of Facebook groups to understand how and when users are active…