Search results for "Compact"

showing 10 items of 531 documents

The LOFT mission concept: a status update

2016

The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolut…

X-ray timing[ SDU.ASTR.GA ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Field of viewAstrophysics01 natural scienceslaw.inventionlawObservatorytiming010303 astronomy & astrophysicsQBPhysicsmicrochannel plates. PROPORTIONAL COUNTER ARRAYCALIBRATIONX-ray astronomyElectronic Optical and Magnetic MaterialApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopy[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]spectroscopyCosmic Vision[ INFO ] Computer Science [cs]Silicon detectorAstrophysics::High Energy Astrophysical PhenomenaCondensed Matter PhysicTelescopeX-rayX-ray astronomySilicon detectors; spectroscopy; timing; X-ray astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesElectronic[INFO]Computer Science [cs]Optical and Magnetic MaterialsSpectral resolutionElectrical and Electronic EngineeringDETECTORta115X-ray astronomy Silicon detectors timing spectroscopy010308 nuclear & particles physicsX-ray imagingX-ray timing; X-ray spectroscopy; X-ray imaging; compact objects; X-ray detectors; microchannel plates. PROPORTIONAL COUNTER ARRAY; CALIBRATION; DETECTORApplied MathematicNeutron starQB460-466 AstrophysicsSilicon detectors; spectroscopy; timing; X-ray astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSilicon detectors; spectroscopy; timing; X-ray astronomySilicon detectorsLarge Observatory For x-ray Timing (LOFT) Large Area Detector (LAD) Wide Field Monitor (WFM) Large Area Silicon Drift Detectors (SDD)Gamma-ray burst
researchProduct

Thermo-mechanical volume change behaviour of Opalinus Clay

2016

The paper examines the thermo-mechanical volume change behaviour of Opalinus Clay in relation to different stress conditions and overconsolidation ratio (OCR) values and evaluates the impact of temperature on some hydro-mechanical properties of this material. To this aim, a focused experimental campaign consisting in high-temperature/high-pressure oedometric tests has been carried out. The results show that the thermo-mechanical volume change behaviour of Opalinus Clay is heavily affected by the OCR: thermal expansion is found when the heating is carried out at high OCR, whereas irreversible thermal compaction is observed when heat is applied at a vertical effective stress that is sufficien…

Yield (engineering)Materials scienceConsolidation (soil)Settore ICAR/07 - GeotecnicaEffective stressGeo-energy0211 other engineering and technologiesCompactionModulus02 engineering and technology010502 geochemistry & geophysicsShaleGeotechnical Engineering and Engineering Geology01 natural sciencesThermal expansionThermo-mechanical behaviourThermalShalesCompressibilityGeotechnical engineeringOpalinus ClayNuclear waste storage021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Comparative efficacy of Zataria multiflora Boiss., Origanum compactum and Eugenia caryophyllus essential oils against E. coli O157:H7, feline caliciv…

2013

Abstract Ready-to-eat salads using baby-leaf and multi-leaf mixes are one of the most promising developments in the fresh-cut food industry. There is great interest in developing novel decontamination treatments, which are both safe for consumers and more efficient against foodborne pathogens. In this study, emulsions of essential oils (EOs) from Origanum compactum (oregano), Eugenia caryophyllus (clove), and Zataria multiflora Boiss (zataria) were applied by spray (0.8 ml) after the sanitizing washing step. The aim was to investigate their ability to control the growth of potentially cross-contaminating pathogens and endogenous microbiota in commercial baby leaves, processed in a fresh-cut…

Zataria multifloraTime FactorsFood industryFood HandlingSyzygiumColony Count Microbialmedicine.disease_causeEscherichia coli O157MicrobiologyOriganum compactumMagnoliopsidaOriganumBotanyVegetablesmedicineOils VolatileFood microbiologyFood scienceEscherichia coliFeline calicivirusLamiaceaebiologybusiness.industryInoculationMicrobiotaTemperatureGeneral Medicinebiology.organism_classificationFood safetyAnti-Bacterial AgentsPlant LeavesFood MicrobiologybusinessFood ScienceCalicivirus FelineInternational journal of food microbiology
researchProduct

Global dynamical behaviors in a physical shallow water system

2016

International audience; The theory of bifurcations of dynamical systems is used to investigate the behavior of travelling wave solutions in an entire family of shallow water wave equations. This family is obtained by a perturbative asymptotic expansion for unidirectional shallow water waves. According to the parameters of the system, this family can lead to different sets of known equations such as Camassa-Holm, Korteweg-de Vries, Degasperis and Procesi and several other dispersive equations of the third order. Looking for possible travelling wave solutions, we show that different phase orbits in some regions of parametric planes are similar to those obtained with the model of the pressure …

[ MATH ] Mathematics [math]Dynamical systems theoryWave propagationCnoidal waveSolitary wave solutionBreaking wave solution01 natural sciencesDark solitons010305 fluids & plasmas0103 physical sciences[MATH]Mathematics [math]010306 general physicsCompaction solutionPhysics[PHYS]Physics [physics]Numerical AnalysisPeriodic wave solution[ PHYS ] Physics [physics]Phase portraitApplied MathematicsMathematical analysisBreaking wave[PHYS.MECA]Physics [physics]/Mechanics [physics]Wave equationCnoidal wavesNonlinear systemClassical mechanicsModeling and SimulationThird order dispersive equation[ PHYS.MECA ] Physics [physics]/Mechanics [physics]Phase portraitsLongitudinal wave
researchProduct

The 30 Year Search for the Compact Object in SN 1987A

2018

Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstrophysicsPhysical Chemistry01 natural sciences7. Clean energyAtomicLuminosityParticle and Plasma PhysicsQB460Astrophysics::Solar and Stellar AstrophysicsAbsorption (logic)10. No inequality010303 astronomy & astrophysicsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)SUPERNOVA REMNANT 1987ASupernovaAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesPhysical Chemistry (incl. Structural)NEUTRON-STARSCIRCUMSTELLAR RINGX-RAYSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBLUE SUPERGIANTSAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starAstronomy & Astrophysicsstars: neutronneutron [stars]Pulsarindividual [supernovae]0103 physical sciencesblack holes [stars]NuclearINTEGRAL FIELD SPECTROSCOPY010306 general physicsUNDERGROUND SCINTILLATION TELESCOPEsupernovae: individualAstrophysics::Galaxy AstrophysicsOrganic ChemistryMolecularAstronomy and AstrophysicsHUBBLE-SPACE-TELESCOPEEffective temperatureNeutron starRAY EMISSION-LINESPhysics and Astronomyindividual (SN 1987A) [supernovae]13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUD[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: black holes
researchProduct

The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

2014

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Observatories ; Sensors ; X-rays ; Equipment and services ; X-ray sourcesComputer scienceObservatoriesFOS: Physical sciencesX-ray sources01 natural sciences7. Clean energyX-rayLoftObservatoryRange (aeronautics)0103 physical sciencesX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic Engineering010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Compact Objects; Timing; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringRemote sensingMillisecondEquipment and servicesCompact Objects010308 nuclear & particles physicsLarge area detectorSensorsApplied MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron starAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

LOFT: the Large Observatory For X-ray Timing

2012

The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV,…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]VisionX-ray timingAstronomySPIE ProceedingsObservatoriesX-ray timing X-ray spectroscopy X-ray imaging compact objectsSilicon Drift ChambersFOS: Physical sciencesddc:500.2X-ray missionsSpace (mathematics)Astrophysics01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-rays0103 physical sciencesElectronicOptical and Magnetic MaterialsInstrumentation (computer programming)Electrical and Electronic EngineeringAerospace engineeringDiagnosticsCompact objects010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSpatial resolutionsezeleSensors010308 nuclear & particles physicsbusiness.industryApplied MathematicsX-ray imagingSilicon Drift ChamberComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCompact objects; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]X-ray spectroscopySilicon Drift Chambers; X-ray missionsInstrumentation and Methods for AstrophysicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

On the analytical expression of the multicompacton and some exact compact solutions of a nonlinear diffusive Burgers’type equation

2018

International audience; We consider the nonlinear diffusive Burgers' equation as a model equation for signals propagation on the nonlinear electrical transmission line with intersite nonlinearities. By applying the extend sine-cosine method and using an appropriate modification of the Double-Exp function method, we successfully derived on one hand the exact analytical solutions of two types of solitary waves with strictly finite extension or compact support: kinks and pulses, and on the other hand the exact solution for two interacting pulse solitary waves with compact support. These analytical results indicate that the speed of the pulse compactons doesn't depends explicitly on the pulse a…

[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]Differential equationDifferential-Equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Solitons01 natural sciences010305 fluids & plasmasKink with compact support[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Modified double Exp-function method0103 physical sciences[MATH]Mathematics [math]Nonlinear Sciences::Pattern Formation and Solitons010301 acousticsN) EquationsPhysicsExtend sine-cosine methodNumerical AnalysisApplied MathematicsMathematical analysis[PHYS.MECA]Physics [physics]/Mechanics [physics]Wave SolutionsNonlinear diffusive Burgers' equationExpression (mathematics)Pulse (physics)Nonlinear systemMulticompactonEvolution-EquationsExact solutions in general relativityCompactonsPulse-amplitude modulationModeling and SimulationLine (geometry)TrigonometryPulse with compact supportCommunications in Nonlinear Science and Numerical Simulation
researchProduct

A method for the preparation of repacked soil cores with homogeneous aggregates for studying microbial nitrogen transformations under highly controll…

1998

International audience; he feasibility of studies on nitrate transformations during incubation in controlled conditions of air-filled porosity using a method of soil core preparation was investigated. Repacked cores were obtained by uniaxial confined compression in a cylindrical mould of a mass of calibrated and conveniently wet aggregates with a water content selected to saturate the textural porosity of the soil aggregates, imposing structural porosity and thereby producing controlled conditions of aeration. The principle and the descrip- tion of the incubation method are explained and some denitrification and respiration data obtained with low and increasing OZ partial pressures are pres…

[SDE] Environmental SciencesDenitrificationMaterials scienceSoil test[SDV]Life Sciences [q-bio][SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySoil Sciencechemistry.chemical_elementMineralogySoil science[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyMicrobiology03 medical and health sciencesnitrateSample preparationPorosityWater contentCONTROLE DU MILIEU0303 health sciencesCompacted soil cores030306 microbiology04 agricultural and veterinary sciencesincubationNitrogen[SDV] Life Sciences [q-bio]Soil structurechemistryInsect Science[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriescontrolled aerationAerationoxygen
researchProduct

L'adhésion au Global Compact des Nations Unies : quels bénéfices pour les organisations ?

2016

National audience

[SHS.GESTION]Humanities and Social Sciences/Business administration[SHS.GESTION] Humanities and Social Sciences/Business administrationGlobal Compact des Nations UniesComputingMilieux_MISCELLANEOUS
researchProduct