Search results for "Compactness"

showing 10 items of 31 documents

A note on boundary conditions for nonlinear operators

2008

We investigate boundary conditions for strict-$\psi$-contractive and $\psi$-condensing operators. We derive results on the existence of eigenvectors with positive and negative eigenvalues and we obtain fixed point theorems for classes of noncompact opera\-tors.

Settore MAT/05 - Analisi MatematicaMeasure of noncompactness k-$\psi$-contraction $\psi$-condensing operator fixed point index.
researchProduct

On some parameters related to weak noncompactness in L1(μ,E)

2009

A weak measure of noncompactness γU is defined in a Banach space in terms of convex compactness. We obtain relationships between the measure γU(A) of a bounded set A in the Bochner space L1(μ,E) and two parameters Π(A) and Λ1(A).

Settore MAT/05 - Analisi MatematicaBochner integrable function weak compactness w-tightness measure of weak noncompactness.
researchProduct

Radó–Kneser–Choquet theorem

2014

We present a new approach to the celebrated theorem of Rado–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so-called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC-Theorem…

Pure mathematicsArzelà–Ascoli theoremFundamental theoremPicard–Lindelöf theoremGeneral MathematicsCompactness theoremta111Fixed-point theoremBrouwer fixed-point theoremSqueeze theoremMean value theoremMathematicsBulletin of the London Mathematical Society
researchProduct

Recensione: MR2928500 Cascales, Bernardo; Kalenda, Ondřej F. K.; Spurný, Jiří A quantitative version of James's compactness theorem. Proc. Edinb. Mat…

2013

Paper review

Compactness criterion
researchProduct

On compactness of the difference of composition operators

2004

Abstract Let φ and ψ be analytic self-maps of the unit disc, and denote by C φ and C ψ the induced composition operators. The compactness and weak compactness of the difference T = C φ − C ψ are studied on H p spaces of the unit disc and L p spaces of the unit circle. It is shown that the compactness of T on H p is independent of p ∈[1,∞). The compactness of T on L 1 and M (the space of complex measures) is characterized, and examples of φ and ψ are constructed such that T is compact on H 1 but non-compact on L 1 . Other given results deal with L ∞ , weakly compact counterparts of the previous results, and a conjecture of J.E. Shapiro.

Pure mathematicsConjectureComposition operatorApplied Mathematics010102 general mathematicsMathematical analysiseducationdifferenceComposition (combinatorics)Space (mathematics)01 natural sciences010101 applied mathematicsCompact spaceUnit circlecomposition operator111 Mathematicscompactness0101 mathematicsUnit (ring theory)Aleksandrov measureAnalysisMathematics
researchProduct

Compactness in Groups of Group-Valued Mappings

2022

We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Fréchet–Šmulian and Ascoli–Arzelà compactness criteria found in the literature.

equimeasurabilitySettore MAT/05 - Analisi MatematicaGeneral Mathematicsuniform quasiboundednessComputer Science (miscellaneous)convergence (and local convergence) in measuremeasure of noncompactnessgroupgroup; pseudonorm; convergence (and local convergence) in measure; measure of noncompactness; equimeasurability; uniform quasiboundednesspseudonormEngineering (miscellaneous)Mathematics
researchProduct

Protoalgebraicity and the Deduction Theorem

2001

This chapter is intended as an introduction to the Deduction Theorem and to applications of this theorem in metalogic.

Pure mathematicsDeduction theoremFundamental theoremComputer Science::Logic in Computer ScienceCompactness theoremHeyting algebraSequent calculusFixed-point theoremGödel's completeness theoremSqueeze theoremMathematics
researchProduct

A PDE model for the spatial dynamics of a voles population structured in age

2020

Abstract We prove existence and stability of entropy weak solutions for a macroscopic PDE model for the spatial dynamics of a population of voles structured in age. The model consists of a scalar PDE depending on time, t , age, a , and space x = ( x 1 , x 2 ) , supplemented with a non-local boundary condition at a = 0 . The flux is linear with constant coefficient in the age direction but contains a non-local term in the space directions. Also, the equation contains a term of second order in the space variables only. Existence of solutions is established by compensated compactness, see Panov (2009), and we prove stability by a doubling of variables type argument.

Parabolic–hyperbolic equationEnergy estimateseducation.field_of_studyConstant coefficientsDoubling of variablesPopulation dynamics structured in age and spaceApplied Mathematics010102 general mathematicsPopulationMathematical analysis01 natural sciences010101 applied mathematicsCompact spaceNon-local fluxCompensated compactnessPopulation dynamics structured in age and space Parabolic–hyperbolic equation Non-local flux Boundary value problem Energy estimates Compensated compactness Doubling of variablesBoundary value problem0101 mathematicseducationBoundary value problemAnalysisMathematics
researchProduct

The Second Main Theorem

1998

Pure mathematicsFundamental theoremPicard–Lindelöf theoremCompactness theoremFixed-point theoremBrouwer fixed-point theoremSqueeze theoremMathematicsMean value theoremCarlson's theorem
researchProduct

Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators

2018

This paper deals with collisionless transport equationsin bounded open domains $\Omega \subset \R^{d}$ $(d\geq 2)$ with $\mathcal{C}^{1}$ boundary $\partial \Omega $, orthogonallyinvariant velocity measure $\bm{m}(\d v)$ with support $V\subset \R^{d}$ and stochastic partly diffuse boundary operators $\mathsf{H}$ relating the outgoing andincoming fluxes. Under very general conditions, such equations are governedby stochastic $C_{0}$-semigroups $\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ on $%L^{1}(\Omega \times V,\d x \otimes \bm{m}(\d v)).$ We give a general criterion of irreducibility of $%\left( U_{\mathsf{H}}(t)\right) _{t\geq 0}$ and we show that, under very natural assumptions, if an …

PhysicsStochastic semigroupApplied MathematicsKinetic equation010102 general mathematicsConvergence to equilibriumZero (complex analysis)Boundary (topology)01 natural sciencesMeasure (mathematics)010101 applied mathematicsConvergence to equilibrium; Kinetic equation; Stochastic semigroupFlow (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Bounded functionCompactness theorem[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Ergodic theory[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematicsInvariant (mathematics)Mathematical PhysicsAnalysisMathematical physicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct