Search results for "Complete"
showing 10 items of 490 documents
On a generalization of Goguen's category Set(L)
2007
The paper considers a category which generalizes Goguen's category Set(L) of L-fuzzy sets with a fixed basis L. We show the necessary and sufficient conditions for the generalized category to be a quasitopos and consider additional inner structure supplied by the latter property.
Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs
2013
Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …
Vector-valued meromorphic functions
2002
A locally complete locally convex space E satisfies that every weakly meromorphic function defined on an open subset of \( \mathbb{C} \) with values in E is meromorphic if and only if E does not contain a countable product of copies of \( \mathbb{C} \). A characterization of locally complete spaces in the spirit of known characterizations of the (metric) convex compactness property is also given.
Enumerating the Walecki-Type Hamiltonian Cycle Systems
2017
Let Kv be the complete graph on v vertices. A Hamiltonian cycle system of odd order v (briefly HCS(v)) is a set of Hamiltonian cycles of Kv whose edges partition the edge set of Kv. By means of a slight modification of the famous HCS(4n+1) of Walecki, we obtain 2n pairwise distinct HCS(4n+1) and we enumerate them up to isomorphism proving that this is equivalent to count the number of binary bracelets of length n, i.e. the orbits of Dn, the dihedral group of order 2n, acting on binary n-tuples.
Basis-set completeness profiles in two dimensions
2002
A two-electron basis-set completeness profile is proposed by analogy with the one-electron profile introduced by D. P. Chong (Can J Chem 1995, 73, 79). It is defined as Y(alpha, beta) = sigmam sigman (Galpha(1)Gbeta(2)/(1/r12)/ psim(1)psin(2)) (psim(1)psin(2)/r12/Galpha(1)Gp(2)) and motivated by the expression for the basis-set truncation correction that occurs in the framework of explicitly correlated methods (Galpha is a scanning Gaussian-type orbital of exponent alpha and [psim] is the orthonormalized one-electron basis under study). The two-electron basis-set profiles provide a visual assessment of the suitability of basis sets to describe electron-correlation effects. Furthermore, they…
NP-completeness of the hamming salesman problem
1985
It is shown that the traveling salesman problem, where cities are bit strings with Hamming distances, is NP-complete.
On Physical Problems that are Slightly More Difficult than QMA
2013
We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).
On Coloring Unit Disk Graphs
1998
In this paper the coloring problem for unit disk (UD) graphs is considered. UD graphs are the intersection graphs of equal-sized disks in the plane. Colorings of UD graphs arise in the study of channel assignment problems in broadcast networks. Improving on a result of Clark et al. [2] it is shown that the coloring problem for UD graphs remains NP-complete for any fixed number of colors k≥ 3 . Furthermore, a new 3-approximation algorithm for the problem is presented which is based on network flow and matching techniques.
Optimization procedures for the bipartite unconstrained 0-1 quadratic programming problem
2014
The bipartite unconstrained 0-1 quadratic programming problem (BQP) is a difficult combinatorial problem defined on a complete graph that consists of selecting a subgraph that maximizes the sum of the weights associated with the chosen vertices and the edges that connect them. The problem has appeared under several different names in the literature, including maximum weight induced subgraph, maximum weight biclique, matrix factorization and maximum cut on bipartite graphs. There are only two unpublished works (technical reports) where heuristic approaches are tested on BQP instances. Our goal is to combine straightforward search elements to balance diversification and intensification in bot…
Machine-Independent Characterizations and Complete Problems for Deterministic Linear Time
2002
This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and mac…