Search results for "Complexity"

showing 10 items of 1094 documents

Convolutional Regression Tsetlin Machine: An Interpretable Approach to Convolutional Regression

2021

The Convolutional Tsetlin Machine (CTM), a variant of Tsetlin Machine (TM), represents patterns as straightforward AND-rules, to address the high computational complexity and the lack of interpretability of Convolutional Neural Networks (CNNs). CTM has shown competitive performance on MNIST, Fashion-MNIST, and Kuzushiji-MNIST pattern classification benchmarks, both in terms of accuracy and memory footprint. In this paper, we propose the Convolutional Regression Tsetlin Machine (C-RTM) that extends the CTM to support continuous output problems in image analysis. C-RTM identifies patterns in images using the convolution operation as in the CTM and then maps the identified patterns into a real…

Computational complexity theorybusiness.industryComputer scienceMemory footprintPattern recognitionArtificial intelligenceNoise (video)businessConvolutional neural networkRegressionMNIST databaseConvolutionInterpretability2021 6th International Conference on Machine Learning Technologies
researchProduct

Low-Rate Reduced Complexity Image Compression using Directionlets

2006

The standard separable two-dimensional (2-D) wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to capture efficiently one-dimensional (1-D) discontinuities, like edges and contours, that are anisotropic and characterized by geometrical regularity along different directions. In our previous work, we proposed a construction of critically sampled perfect reconstruction anisotropic transform with directional vanishing moments (DVM) imposed in the corresponding basis functions, called directionlets. Here, we show that the computational complexity of our transform is comparable to the co…

Computational complexity theorybusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage codingWavelet transformPattern recognitionImage processingImage segmentationSparse approximationWavelet transformsWaveletData compressionImage reconstructionArtificial intelligencebusinessImage representationMathematicsImage compressionData compression2006 International Conference on Image Processing
researchProduct

A Variational Approach for Denoising Hyperspectral Images Corrupted by Poisson Distributed Noise

2014

Poisson distributed noise, such as photon noise is an important noise source in multi- and hyperspectral images. We propose a variational based denoising approach, that accounts the vectorial structure of a spectral image cube, as well as the poisson distributed noise. For this aim, we extend an approach for monochromatic images, by a regularisation term, that is spectrally and spatially adaptive and preserves edges. In order to take the high computational complexity into account, we derive a Split Bregman optimisation for the proposed model. The results show the advantages of the proposed approach compared to a marginal approach on synthetic and real data.

Computational complexity theorybusiness.industryNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingPoisson distributionTerm (time)symbols.namesakeNoiseComputer Science::Computer Vision and Pattern RecognitionsymbolsComputer visionArtificial intelligenceMonochromatic colorCubebusinessAlgorithmMathematics
researchProduct

Space-Frequency Quantization using Directionlets

2007

In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of comp…

Computational complexity theorybusiness.industryWavelet transformBasis functionIterative reconstructionSet partitioning in hierarchical treesComputer visionArtificial intelligencebusinessQuantization (image processing)AlgorithmData compressionImage compressionMathematics2007 IEEE International Conference on Image Processing
researchProduct

Datorzinātne un informācijas tehnoloģijas: Datu bāzes un informācijas sistēmas: doktorantu konsorcijs. Sestā Starptautiskā Baltijas konference Baltic…

2004

The Baltic Conference on Databases and Information Systems is a biannual international forum for technical discussion among researchers and developers of database and information systems. The objective of the conference is to bring together researchers as well as practitioners and PhD students in the field of computing research that will improve the construction of future information systems. On the other hand, the conference is giving opportunities to developers, users and researchers of advanced IS technologies to present their work and to exchange their ideas and at the same time providing a feedback to database community.

Computational complexityDatnesQuantum algorithmsDatabasesDataInformation systems:TECHNOLOGY::Information technology::Computer science [Research Subject Categories]DatubāzesQuantum computingBoolean functionsInformācijas sistēmas
researchProduct

BELM: Bayesian Extreme Learning Machine

2011

The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap…

Computer Networks and CommunicationsComputer scienceComputer Science::Neural and Evolutionary ComputationBayesian probabilityOverfittingMachine learningcomputer.software_genrePattern Recognition AutomatedReduction (complexity)Artificial IntelligenceComputer SimulationRadial basis functionExtreme learning machineArtificial neural networkbusiness.industryEstimation theoryBayes TheoremGeneral MedicineComputer Science ApplicationsMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsSoftwareIEEE Transactions on Neural Networks
researchProduct

Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

2018

Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neur…

Computer Networks and CommunicationsComputer scienceReal-time computingParameterized complexitylcsh:TK7800-836002 engineering and technologyextreme learning machine0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)Electrical and Electronic EngineeringEnginyeria d'ordinadorsField-programmable gate arrayFPGAExtreme learning machineEnginyeria elèctricaArtificial neural networkData stream mininglcsh:Electronics020206 networking & telecommunicationsOS-ELMreal-time learningHardware and ArchitectureControl and Systems Engineeringon-chip trainingSignal Processingon-line learning020201 artificial intelligence & image processingDistributed memoryonline sequential ELMhardware implementationAlgorithm
researchProduct

An efficient distributed algorithm for generating and updating multicast trees

2006

As group applications are becoming widespread, efficient network utilization becomes a growing concern. Multicast transmission represents a necessary lower network service for the wide diffusion of new multimedia network applications. Multicast transmission may use network resources more efficiently than multiple point-to-point messages; however, creating optimal multicast trees (Steiner Tree Problem in networks) is prohibitively expensive. This paper proposes a distributed algorithm for the heuristic solution of the Steiner Tree Problem, allowing the construction of effective distribution trees using a coordination protocol among the network nodes. Furthermore, we propose a novel distribut…

Computer Networks and Communicationscomputer.internet_protocolComputer scienceDistributed computingNetwork ontology.Distance Vector Multicast Routing ProtocolMultimedia Broadcast Multicast ServiceSteiner tree problemTheoretical Computer Sciencesymbols.namesakeArtificial IntelligenceConvergence (routing)Multicast addressXcastCommunication complexityPragmatic General MulticastIntelligent systemSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniMulticast transmissionProtocol Independent MulticastMulticastInter-domainbusiness.industryNode (networking)Programmable networkComputer Graphics and Computer-Aided DesignSource-specific multicastHardware and ArchitectureDistributed algorithmNetwork serviceReliable multicastsymbolsSituation calculuIP multicastbusinesscomputerSoftwareComputer networkParallel Computing
researchProduct

New separation between $s(f)$ and $bs(f)$

2011

In this note we give a new separation between sensitivity and block sensitivity of Boolean functions: $bs(f)=(2/3)s(f)^2-(1/3)s(f)$.

Computer Science - Computational Complexity
researchProduct

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

2014

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy, is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity. Previously the best known lower bound was $C_1(f)\geq \frac{bs_0(f)}{2 s_0(f)}$, achieved by Kenyon and Kutin. We improve this to $C_1(f)\geq \frac{3 bs_0(f)}{2 s_0(f)}$. While this improvement is only by a constant factor, this is quite important, as it precludes achi…

Computer Science - Computational Complexity
researchProduct