Search results for "Composite material"
showing 10 items of 2340 documents
Permeability of three-dimensional random fiber webs
1998
We report the results of essentially ab initio simulations of creeping flow through large threedimensional random fiber webs that closely resemble fibrous sheets such as paper and nonwoven fabrics. The computational scheme used in this Letter is that of the lattice-Boltzmann method and contains no free parameters concerning the properties of the porous medium or the dynamics of the flow. The computed permeability of the web is found to be in good agreement with experimental data, and confirms that permeability depends exponentially on porosity over a large range of porosity. [S0031-9007(97)05087-4]
Corrosion and wear resistance of coatings produced on AZ31 Mg alloy by plasma electrolytic oxidation in silicate-based K2TiF6 containing solution: Ef…
2022
Abstract In this research, plasma electrolytic oxidation coatings were prepared on AZ31 Mg alloy in a silicate-based solution containing K2TiF6 using bipolar and soft sparking waveforms with 10, 20, and 30% cathodic duty cycles. The coatings displayed a net-like surface morphology consisted of irregular micro-pores, micro-cracks, fused oxide particles, and a sintered structure. Due to the incorporation of TiO2 colloidal particles and the cathodic pulse repair effect, most of the micro-pores were sealed. Long-term corrosion performance of the coatings was investigated using electrochemical impedance spectroscopy during immersion in 3.5 wt.% NaCl solution up to 14 days. The coating grown by t…
Fast and blister-free irradiation conditions for cross-linking of PMMA induced by 2MeV protons
2013
For soft lithography, the conventional negative tone resists, such as SU-8, that are used to create the mold have a number of drawbacks. PMMA, which is normally used as a positive tone resist, can be used as a negative resist by using high-fluence irradiation conditions. In this report, we outline optimization of the irradiation conditions for PMMA thin films using 2MeV H^+ ions to exploit their ability to work as a negative tone resist at ion fluences above 1.0x10^1^5ionscm^-^2. The main aim was to induce cross-linking while maintaining the exposed regions free of blisters and maintaining short irradiation times. We found that by using a two-step process with a low-flux irradiation, follow…
Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan
2014
International audience; This study has for objective the determination of thermal, mechanical and acoustical properties of insulating bio-based composite made with chitosan and sunflower's stalks particles. An experimental design was established to find the size grading of particles, the ratio chitosan/sunflower particles and the stress of compaction influencing the thermal and mechanical properties. Composites with a thermal conductivity $(\kappa)$ of 0.056 W/m/K, a maximum stress $(\sigma_{\text{max}})$ of 2 MPa and an acoustic coefficient of absorption $(\alpha)$ of 0.2 were obtained with a ratio of chitosan of 4.3% (w/w) and a size grading of particles higher to 3 mm. These mechanical a…
Acoustic characterization of Silica aerogel clamped plates for perfect absorption purpose
2017
International audience; Silica aerogel has been widely studied as bulk material for its extremely low density and thermal conductivity. Plates or membranes made of this extremely soft materials exhibits interesting properties for sound absorption. A novel signal processing method for the characterization of an acoustic metamaterial made of silica aerogel clamped plates is presented. The acoustic impedance of a silica aerogel clamped plate is derived from the elastic theory for the flexural waves, while the transfer matrix method is used to model reflection and transmission coefficients of a single plate. Experimental results are obtained by using an acoustic impedance tube. The difference b…
The effects of water absorption and salt fog exposure on agglomerated cork compressive response
2022
The replacement of synthetic foams with agglomerated cork in sandwich composites can meet the increasing environmental concerns. Its peculiar morphology and chemical composition lead to outstanding dimensional recovery that endorsed a broad investigation of its compressive behavior. The knowledge of neat material response is fundamental to obtain a reliable design dataset, but it is necessary to consider all the environmental factors (water, moisture and sunlight) that significantly modify material mechanical properties. In view of this, the present work investigates the effect of distilled and seawater absorption and salt fog exposure on the compressive behavior of two agglomerated corks w…
Investigation of water sorption and aluminum releases from high viscosity and resin modified glass ionomer.
2019
Background High viscosity glass ionomer cement (HVGIC) and resin-modified glass ionomer cement (RMGIC) have recently been clinically preferred thanks to their numerous advantages. However, initial moisture contamination has a negative effect on the mechanical and physical properties of these cements. The aim of this study was in vitro of HVGICs and RMGICs, with and without surface protection, on water sorption, solubility and release of aluminum. Material and Methods In this study, as HVGICs; Equia Forte, IonoStar Plus, Riva Self Cure; as RMCIS, Ionolux and Riva Light Cure; and as control, Z250 universal composite was used. Equia coat, Voco varnish and Riva coat were chosen as surface prote…
Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis
2015
Abstract The present work proposes an experimental optical methodology able to measure the transient swelling stresses induced by the water uptake ageing of polymers. In particular, the work describes the implementation of a Photoelastic technique to quantify internal stresses arising during the hydrothermal ageing of cast epoxy samples. The material investigated is a model DGEBA/DDS epoxy system. Curing and post-curing cycles have been optimised in order to obtain a fully cured, high T g , and completely stress free initial condition. Rectangular beam samples were then left in a hydrothermal bath at 90 °C, and regularly monitored by gravimetric and photoelastic analyses. The quantitative e…
Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing
2021
This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was wit…
Hydrothermal Aging of an Epoxy Resin Filled with Carbon Nanofillers
2020
The effects of temperature and moisture on flexural and thermomechanical properties of neat and filled epoxy with both multiwall carbon nanotubes (CNT), carbon nanofibers (CNF), and their hybrid components were investigated. Two regimes of environmental aging were applied: Water absorption at 70 °