Search results for "Computational Mathematic"
showing 10 items of 987 documents
Recurrence relations for rational cubic methods I: The Halley method
1990
In this paper we present a system of a priori error bounds for the Halley method in Banach spaces. Our theorem supplies sufficient conditions on the initial point to ensure the convergence of Halley iterates, by means of a system of “recurrence relations”, analogous to those given for the Newton method by Kantorovich, improving previous results by Doring [4]. The error bounds presented are optimal for second degree polynomials. Other rational cubic methods, as the Chebyshev method, will be treated in a subsequent paper.
Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method
2014
Numerical solution of partial differential equations governing time domain simulations in computational electromagnetics, is usually based on grid methods in space and on explicit schemes in time. A predefined grid in the problem domain and a stability step size restriction need. Recently, the authors have reformulated the meshless framework based on smoothed particle hydrodynamics, in order to be applied for time domain electromagnetic simulation. Despite the good spatial properties, the numerical explicit time integration introduces, also in a meshless context, a severe constraint. In this paper, at first, the stability condition is addressed in a general way by allowing the time step inc…
Exponential convergence andH-c multiquadric collocation method for partial differential equations
2003
The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocatethe approximate solution of PDEs. It is a truly meshless method as compared to some of the so-calledmeshless or element-free finite element methods. For the multiquadric and Gaussian RBFs, there are twoways to make the solution converge—either by refining the mesh size
A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion
2009
The aim of this paper is to introduce a deterministic particle method for the solution of two strongly coupled reaction-diffusion equations. In these equations the diffusion is nonlinear because we consider the cross and self-diffusion effects. The reaction terms on which we focus are of the Lotka-Volterra type. Our treatment of the diffusion terms is a generalization of the idea, introduced in [P. Degond, F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput. 11 (1990) 293-310] for the linear diffusion, of interpreting Fick's law in a deterministic way as a prescription on the particle velocity. Time discretization is based on the …
The exponent for superalgebras with superinvolution
2018
Abstract Let A be a superalgebra with superinvolution over a field of characteristic zero and let c n ⁎ ( A ) , n = 1 , 2 , … , be its sequence of ⁎-codimensions. In [6] it was proved that such a sequence is exponentially bounded. In this paper we capture this exponential growth for finitely generated superalgebras with superinvolution A over an algebraically closed field of characteristic zero. We shall prove that lim n → ∞ c n ⁎ ( A ) n exists and it is an integer, denoted exp ⁎ ( A ) and called ⁎-exponent of A. Moreover, we shall characterize finitely generated superalgebras with superinvolution according to their ⁎-exponent.
Monotone cubic spline interpolation for functions with a strong gradient
2021
Abstract Spline interpolation has been used in several applications due to its favorable properties regarding smoothness and accuracy of the interpolant. However, when there exists a discontinuity or a steep gradient in the data, some artifacts can appear due to the Gibbs phenomenon. Also, preservation of data monotonicity is a requirement in some applications, and that property is not automatically verified by the interpolator. Hence, some additional techniques have to be incorporated so as to ensure monotonicity. The final interpolator is not actually a spline as C 2 regularity and monotonicity are not ensured at the same time. In this paper, we study sufficient conditions to obtain monot…
Crack detection using electrostatic measurements
2001
In this paper we extend recent work on the detection of inclusions using electrostatic measurements to the problem of crack detection in a two-dimensional object. As in the inclusion case our method is based on a factorization of the difference between two Neumann-Dirichlet operators. The factorization possible in the case of cracks is much simpler than that for inclusions and the analysis is greatly simplified. However, the directional information carried by the crack makes the practical implementation of our algorithm more computationally demanding.
BEM-Based Magnetic Field Reconstruction by Ensemble Kálmán Filtering
2022
Abstract Magnetic fields generated by normal or superconducting electromagnets are used to guide and focus particle beams in storage rings, synchrotron light sources, mass spectrometers, and beamlines for radiotherapy. The accurate determination of the magnetic field by measurement is critical for the prediction of the particle beam trajectory and hence the design of the accelerator complex. In this context, state-of-the-art numerical field computation makes use of boundary-element methods (BEM) to express the magnetic field. This enables the accurate computation of higher-order partial derivatives and local expansions of magnetic potentials used in efficient numerical codes for particle tr…
Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method
2000
Abstract We have simulated spreading of small droplets on smooth and rough solid surfaces using the three-dimensional lattice-Boltzmann method. We present results for the influence of the initial distance and shape of the drop from the surface on scaling of droplet radius R as a function of time. For relatively flat initial drop shapes our observations are consistent with Tanner's law R ∼ t q , where q =1/10. For increasingly spherical initial shapes, the exponent q increases rapidly being above one half for spherical droplets initially just above the surface. As expected, surface roughness slows down spreading, decreases the final drop radius, and results in irregular droplet shape due to …
Well-posedness of the boundary layer equations
2004
We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. Theproof is achieved applying the abstract Cauchy--Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433--461], as we do not require analyticity of the data with respect to the normal variable.