6533b827fe1ef96bd1285ba6
RESEARCH PRODUCT
The exponent for superalgebras with superinvolution
Antonio Ioppolosubject
Numerical AnalysisSequencePure mathematicsAlgebra and Number TheoryExponentSuperinvolution010102 general mathematicsZero (complex analysis)Exponent; Exponential growth; SuperinvolutionField (mathematics)010103 numerical & computational mathematics01 natural sciencesExponential growthSuperalgebraIntegerBounded functionExponentDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsAlgebraically closed fieldSuperinvolution Exponent Exponential growthMathematicsdescription
Abstract Let A be a superalgebra with superinvolution over a field of characteristic zero and let c n ⁎ ( A ) , n = 1 , 2 , … , be its sequence of ⁎-codimensions. In [6] it was proved that such a sequence is exponentially bounded. In this paper we capture this exponential growth for finitely generated superalgebras with superinvolution A over an algebraically closed field of characteristic zero. We shall prove that lim n → ∞ c n ⁎ ( A ) n exists and it is an integer, denoted exp ⁎ ( A ) and called ⁎-exponent of A. Moreover, we shall characterize finitely generated superalgebras with superinvolution according to their ⁎-exponent.
year | journal | country | edition | language |
---|---|---|---|---|
2018-10-01 |