0000000000068993

AUTHOR

Antonio Ioppolo

0000-0003-4774-5483

showing 14 related works from this author

On multiplicities of cocharacters for algebras with superinvolution

2021

Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

Pure mathematicsSequenceMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraSuperinvolution010102 general mathematicsCodimensionCocharacters; Colength; Multiplicities; SuperinvolutionCocharacters01 natural sciencesmultiplicitiecocharacterSettore MAT/02 - AlgebraIdentity (mathematics)SuperinvolutionBounded function0103 physical sciences010307 mathematical physicsFinitely-generated abelian groupColength0101 mathematicsConstant (mathematics)Mathematics
researchProduct

Classifying G-graded algebras of exponent two

2019

Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …

General Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)0102 computer and information sciencesGraded algebras Exponent GrowthCharacterization (mathematics)01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraInteger010201 computation theory & mathematicsBounded functionExponentPolynomial identity exponent codimension graded algebra0101 mathematicsVariety (universal algebra)Abelian groupMathematics
researchProduct

Polynomial codimension growth of algebras with involutions and superinvolutions

2017

Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…

Discrete mathematicsPure mathematicsAlgebra and Number TheorySubvarietySuperinvolution010102 general mathematicsSubalgebraGraded involution; Growth; Polynomial identity; SuperinvolutionTriangular matrix010103 numerical & computational mathematicsGroup algebraCodimensionPolynomial identity Graded involution Superinvolution GrowthGrowthPolynomial identity01 natural sciencesGraded involutionSettore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsFinite setMathematics
researchProduct

Trace Identities on Diagonal Matrix Algebras

2020

Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.

Pure mathematicsTrace (linear algebra)Diagonal matricesCodimensions; Diagonal matrices; Polynomial identities; TracesDiagonal matriceCodimensionsPolynomial identitiesSettore MAT/02 - AlgebraPolynomial identitieCodimensionTracesDiagonal matrixAlgebra over a fieldMathematicsTrace
researchProduct

The exponent for superalgebras with superinvolution

2018

Abstract Let A be a superalgebra with superinvolution over a field of characteristic zero and let c n ⁎ ( A ) , n = 1 , 2 , … , be its sequence of ⁎-codimensions. In [6] it was proved that such a sequence is exponentially bounded. In this paper we capture this exponential growth for finitely generated superalgebras with superinvolution A over an algebraically closed field of characteristic zero. We shall prove that lim n → ∞ ⁡ c n ⁎ ( A ) n exists and it is an integer, denoted exp ⁎ ⁡ ( A ) and called ⁎-exponent of A. Moreover, we shall characterize finitely generated superalgebras with superinvolution according to their ⁎-exponent.

Numerical AnalysisSequencePure mathematicsAlgebra and Number TheoryExponentSuperinvolution010102 general mathematicsZero (complex analysis)Exponent; Exponential growth; SuperinvolutionField (mathematics)010103 numerical & computational mathematics01 natural sciencesExponential growthSuperalgebraIntegerBounded functionExponentDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsAlgebraically closed fieldSuperinvolution Exponent Exponential growthMathematics
researchProduct

Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions

2018

Let A be a superalgebra with graded involution or superinvolution ∗ and let $c_{n}^{*}(A)$, n = 1,2,…, be its sequence of ∗-codimensions. In case A is finite dimensional, in Giambruno et al. (Algebr. Represent. Theory 19(3), 599–611 2016, Linear Multilinear Algebra 64(3), 484–501 2016) it was proved that such a sequence is polynomially bounded if and only if the variety generated by A does not contain the group algebra of $\mathbb {Z}_{2}$ and a 4-dimensional subalgebra of the 4 × 4 upper-triangular matrices with suitable graded involutions or superinvolutions. In this paper we study the general case of ∗-superalgebras satisfying a polynomial identity. As a consequence we classify the varie…

Involution (mathematics)Multilinear algebraInvolutionSubvarietySuperinvolutionGeneral Mathematics010102 general mathematicsSubalgebra0211 other engineering and technologies021107 urban & regional planning02 engineering and technologyGroup algebraGrowthGrowth; Involution; Polynomial identity; SuperinvolutionPolynomial identity01 natural sciencesSuperalgebraCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsMathematics
researchProduct

Trace identities and almost polynomial growth

2021

In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: $D_2$, the algebra of $2\times 2$ diagonal matrices and $C_2$, the algebra of $2 \times 2$ matrices generated by $e_{11}+e_{22}$ and $e_{12}$. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.

PolynomialPure mathematicsTrace (linear algebra)Trace algebrasField (mathematics)01 natural sciencesPolynomial identitiesMatrix (mathematics)16R10 16R30 16R50Polynomial identitieCodimensions growth Polynomial identities Trace algebras0103 physical sciencesDiagonal matrixFOS: Mathematics0101 mathematicsCommutative propertyMathematicsCodimensions growth; Polynomial identities; Trace algebrasAlgebra and Number TheoryCodimensions growth010102 general mathematicsTrace algebraMathematics - Rings and AlgebrasExponential functionSettore MAT/02 - AlgebraRings and Algebras (math.RA)010307 mathematical physicsVariety (universal algebra)
researchProduct

Varieties of algebras with pseudoinvolution and polynomial growth

2017

Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…

16R50; 16W50; growth; Polynomial identity; Primary: 16R10; pseudoinvolution; Secondary: 16W10Linear function (calculus)PolynomialPure mathematicspseudoinvolutionAlgebra and Number TheorySubvariety16R50growth010102 general mathematicsPolynomial identity pseudo involution codimension growthZero (complex analysis)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesPrimary: 16R10Settore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsAlgebraically closed fieldVariety (universal algebra)16W50Secondary: 16W10MathematicsLinear and Multilinear Algebra
researchProduct

Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths

2022

Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…

ColengthsPolynomialSequencePure mathematicsMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraPseudoinvolutionsZero (complex analysis)Cocharacters; Colengths; Multiplicities; Polynomial identities; PseudoinvolutionsCocharactersSuperalgebraPolynomial identitiesSettore MAT/02 - AlgebraSection (category theory)Bounded functionIdeal (ring theory)Algebraically closed fieldMathematics
researchProduct

Superinvolutions on upper-triangular matrix algebras

2018

Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …

PolynomialPure mathematicsAlgebra and Number Theory010102 general mathematicsPolynomial identity superinvolution upper-triangular matrices.Zero (complex analysis)Triangular matrixStructure (category theory)010103 numerical & computational mathematicsSingle class01 natural sciencesSuperalgebraSettore MAT/02 - Algebrapolynomial identity superinvolutions upper triangular matrices cocharacter0101 mathematicsAbelian groupAlgebraically closed fieldMathematics
researchProduct

Some characterizations of algebras with involution with polynomial growth of their codimensions

2018

Let A be an associative algebra endowed with an involution ∗ of the first kind and let c ∗n (A) denote the sequence of ∗-codimensions of A. In this paper, we are interested in algebras with involution such that the ∗-codimension sequence is polynomially bounded. We shall prove that A is of this kind if and only if it satisfies the same identities of a finite direct sum of finite dimensional algebras with involution A i , each of which with Jacobson radical of codimension less than or equal to one in A i . We shall also relate the condition of having polynomial codimension growth with the sequence of cocharacters and with the sequence of colengths. Along the way, we shall show that the multi…

Involution (mathematics)polynomial growthAlgebra and Number Theory16R50010102 general mathematicsSecondary: 16R10010103 numerical & computational mathematics01 natural sciencesPolynomial identitiesCombinatoricsPrimary: 16W10Polynomial identitieAssociative algebraAlgebras with involution0101 mathematics16R50; algebras with involution; polynomial growth; Polynomial identities; Primary: 16W10; Secondary: 16R10Mathematics
researchProduct

Standard polynomials and matrices with superinvolutions

2016

Abstract Let M n ( F ) be the algebra of n × n matrices over a field F of characteristic zero. The superinvolutions ⁎ on M n ( F ) were classified by Racine in [12] . They are of two types, the transpose and the orthosymplectic superinvolution. This paper is devoted to the study of ⁎-polynomial identities satisfied by M n ( F ) . The goal is twofold. On one hand, we determine the minimal degree of a standard polynomial vanishing on suitable subsets of symmetric or skew-symmetric matrices for both types of superinvolutions. On the other, in case of M 2 ( F ) , we find generators of the ideal of ⁎-identities and we compute the corresponding sequences of cocharacters and codimensions.

Numerical AnalysisPolynomialAlgebra and Number TheoryDegree (graph theory)SuperinvolutionNumerical analysis010102 general mathematicsZero (complex analysis)Field (mathematics)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesCombinatoricsMinimal degree; Polynomial identity; SuperinvolutionMinimal degreeTransposeDiscrete Mathematics and CombinatoricsIdeal (ring theory)Geometry and Topology0101 mathematicsNumerical AnalysiGeometry and topologyMathematics
researchProduct

Matrix algebras with degenerate traces and trace identities

2022

In this paper we study matrix algebras with a degenerate trace in the framework of the theory of polynomial identities. The first part is devoted to the study of the algebra $D_n$ of $n \times n$ diagonal matrices. We prove that, in case of a degenerate trace, all its trace identities follow by the commutativity law and by pure trace identities. Moreover we relate the trace identities of $D_{n+1}$ endowed with a degenerate trace, to those of $D_n$ with the corresponding trace. This allows us to determine the generators of the trace T-ideal of $D_3$. In the second part we study commutative subalgebras of $M_k(F)$, denoted by $C_k$ of the type $F + J$ that can be endowed with the so-called st…

PolynomialAlgebra and Number TheoryTrace (linear algebra)Trace algebrasDiagonal matricesDegenerate energy levelsMathematics - Rings and AlgebrasType (model theory)Polynomial identitiesStirling numbersCombinatoricsMatrix (mathematics)Settore MAT/02 - Algebra16R10 16R30 16R50Rings and Algebras (math.RA)Diagonal matrixFOS: MathematicsDegenerate tracesAlgebra over a fieldCommutative propertyTrace algebras; Polynomial identities; Diagonal matrices; Degenerate traces; Stirling numbersMathematics
researchProduct

Varieties of Algebras with Superinvolution of Almost Polynomial Growth

2015

Let A be an associative algebra with superinvolution ∗ over a field of characteristic zero and let $c_{n}^{\ast }(A)$ be its sequence of corresponding ∗-codimensions. In case A is finite dimensional, we prove that such sequence is polynomially bounded if and only if the variety generated by A does not contain three explicitly described algebras with superinvolution. As a consequence we find out that no intermediate growth of the ∗-codimensions between polynomial and exponential is allowed.

SequencePolynomialSuperinvolutionGeneral Mathematics010102 general mathematicsGrowth; Polynomial identity; SuperinvolutionZero (complex analysis)Field (mathematics)010103 numerical & computational mathematicsGrowthPolynomial identity01 natural sciencesExponential functionCombinatoricsSettore MAT/02 - AlgebraBounded functionAssociative algebraMathematics (all)0101 mathematicsVariety (universal algebra)Mathematics
researchProduct