Search results for "Computational Mathematic"

showing 10 items of 987 documents

On zeros of characters of finite groups

2018

We survey some results concerning the distribution of zeros in the character table of a finite group and its influence on the structure of the group itself.

Pure mathematicsFinite groupGroups charactersDistribution (number theory)Character tableGroup (mathematics)010102 general mathematicsStructure (category theory)010103 numerical & computational mathematics0101 mathematics01 natural sciencesMathematics
researchProduct

Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators

2016

In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.

Pure mathematicsFredholm theoryDrazin invertible operatorGeneral MathematicsMathematics::Rings and Algebras010102 general mathematicsDrazin inverse010103 numerical & computational mathematicsType (model theory)01 natural sciencesFredholm theorylaw.inventionAlgebrasymbols.namesakeOperator (computer programming)Invertible matrixlawSettore MAT/05 - Analisi MatematicasymbolsBrowder and Weyl type theoremMathematics (all)0101 mathematicsMathematics
researchProduct

Some fourth order CY-type operators with non symplectically rigid monodromy

2012

We study tuples of matrices with rigidity index two in $\Sp_4(\mathbb{C})$, which are potentially induced by differential operators of Calabi-Yau type. The constructions of those monodromy tuples via algebraic operations and middle convolutions and the related constructions on the level differential operators lead to previously known and new examples.

Pure mathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematicsDifferential operator01 natural sciencesMathematics - Algebraic GeometryFourth orderMathematics::Algebraic GeometryMonodromyMathematics - Classical Analysis and ODEsAlgebraic operationClassical Analysis and ODEs (math.CA)FOS: MathematicsHadamard product0101 mathematicsTupleMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)Mathematics
researchProduct

Boundary modulus of continuity and quasiconformal mappings

2012

Let D be a bounded domain in R n , n ‚ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that jf(x) i f(y)j • !(jx i yj) for all x and y in @D, where ! is a non-negative non-decreasing function satisfying !(2t) • 2!(t) for t ‚ 0. We prove, with an additional growth condition on !, that jf(x) i f(y)jC maxf!(jx i yj);jx i yj fi g

Pure mathematicsGeneral MathematicsBounded function010102 general mathematicsDomain (ring theory)Boundary (topology)Geometry010103 numerical & computational mathematicsFunction (mathematics)0101 mathematics01 natural sciencesModulus of continuityMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Local Spectral Properties Under Conjugations

2021

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.

Pure mathematicsGeneral MathematicsConjugations010102 general mathematicsSpectral propertiesLocal spectral propertiesHilbert space010103 numerical & computational mathematicsType (model theory)01 natural sciencesWeyl-type theorems for upper triangular operator matricessymbols.namesakeOperator matrixSettore MAT/05 - Analisi MatematicaCore (graph theory)symbols0101 mathematicsMathematics
researchProduct

Soft ditopological spaces

2015

We introduce the concept of a soft ditopological space as the "soft Generalization" of the concept of a ditopological space as it is defined in the papers by L.M. Brown and co-authors, see e.g. L. M. Brown, R. Ert?rk, ?. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2) (2004), 171-199. Actually a soft ditopological space is a soft set with two independent structures on it - a soft topology and a soft co-topology. The first one is used to describe openness-type properties of a space while the second one deals with its closedness-type properties. We study basic properties of such spaces and accordingly defined continuous mappings between…

Pure mathematicsGeneralizationGeneral MathematicsFuzzy set010103 numerical & computational mathematics02 engineering and technologySpace (mathematics)01 natural sciencesFuzzy topologyGeneral Mathematics (math.GM)FOS: Mathematics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsMathematics - General MathematicsTopology (chemistry)MathematicsSoft setFilomat
researchProduct

Remark on integrable Hamiltonian systems

1980

An extension ton degrees of freedom of the fact is established that forn=1 the time and the energy constant are canonically conjugate variables. This extension is useful in some cases to get action-angle variables from the general solution of a given integrable Hamiltonian system. As an example the Delaunay variables are proved to be canonical.

Pure mathematicsIntegrable systemDelaunay triangulationApplied MathematicsMathematical analysisDegrees of freedom (physics and chemistry)Conjugate variablesAstronomy and AstrophysicsExtension (predicate logic)Hamiltonian systemComputational MathematicsSpace and Planetary ScienceModeling and SimulationAutomotive EngineeringConstant (mathematics)Mathematical PhysicsMathematicsCelestial Mechanics
researchProduct

Continuous numerical solutions of coupled mixed partial differential systems using Fer's factorization

1999

In this paper continuous numerical solutions expressed in terms of matrix exponentials are constructed to approximate time-dependent systems of the type ut A(t)uxx B(t)u=0; 0 0, u(0;t)=u(p;t)=0; u(x;0)=f(x);06 x6p. After truncation of an exact series solution, the numerical solution is constructed using Fer’s factorization. Given >0 and t0;t1; with 0<t0<t1 and D(t0;t1)=f(x;t); 06x6p; t06t6t1g the error of the approximated solution with respect to the exact series solution is less than uniformly in D(t0;t1). An algorithm is also included. c 1999 Elsevier Science B.V. All rights reserved. AMS classication: 65M15, 34A50, 35C10, 35A50

Pure mathematicsPartial differential equationSeries (mathematics)TruncationApplied MathematicsMixed time-dependent partial differential systemsType (model theory)Fer's factorizationExponential functionAlgorithmCombinatoricsComputational MathematicsMatrix (mathematics)Accurate solutionFactorizationPartial derivativeA priori error boundsMathematicsJournal of Computational and Applied Mathematics
researchProduct

Gibbs states, algebraic dynamics and generalized Riesz systems

2020

In PT-quantum mechanics the generator of the dynamics of a physical system is not necessarily a self-adjoint Hamiltonian. It is now clear that this choice does not prevent to get a unitary time evolution and a real spectrum of the Hamiltonian, even if, most of the times, one is forced to deal with biorthogonal sets rather than with on orthonormal basis of eigenvectors. In this paper we consider some extended versions of the Heisenberg algebraic dynamics and we relate this analysis to some generalized version of Gibbs states and to their related KMS-like conditions. We also discuss some preliminary aspects of the Tomita-Takesaki theory in our context.

Pure mathematicsPhysical systemFOS: Physical sciencesBiorthogonal sets of vectors01 natural sciencesUnitary statesymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basis0101 mathematicsAlgebraic numberOperator Algebras (math.OA)Eigenvalues and eigenvectorsMathematical PhysicsMathematics010308 nuclear & particles physicsMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsTime evolutionMathematics - Operator AlgebrasTomita–Takesaki theoryMathematical Physics (math-ph)Gibbs statesNon-Hermitian HamiltoniansComputational MathematicsComputational Theory and MathematicsBiorthogonal systemsymbolsHamiltonian (quantum mechanics)
researchProduct

Truncated modules and linear presentations of vector bundles

2018

We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.

Pure mathematicsRank (linear algebra)General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Vector bundle010103 numerical & computational mathematicsLinear presentationCommutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsPoint (geometry)MSC: 13D02 16W50 15A30 14J600101 mathematicsVector bundleAlgebraic Geometry (math.AG)MathematicsMathematics::Commutative Algebra010102 general mathematicsConstruct (python library)Graded truncated moduleMathematics - Commutative AlgebraInstanton bundleCohomology[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Matrix of co nstant rank[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Constant (mathematics)
researchProduct