Search results for "Computational Mathematic"
showing 10 items of 987 documents
On zeros of characters of finite groups
2018
We survey some results concerning the distribution of zeros in the character table of a finite group and its influence on the structure of the group itself.
Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators
2016
In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.
Some fourth order CY-type operators with non symplectically rigid monodromy
2012
We study tuples of matrices with rigidity index two in $\Sp_4(\mathbb{C})$, which are potentially induced by differential operators of Calabi-Yau type. The constructions of those monodromy tuples via algebraic operations and middle convolutions and the related constructions on the level differential operators lead to previously known and new examples.
Boundary modulus of continuity and quasiconformal mappings
2012
Let D be a bounded domain in R n , n ‚ 2, and let f be a continuous mapping of D into R n which is quasiconformal in D. Suppose that jf(x) i f(y)j • !(jx i yj) for all x and y in @D, where ! is a non-negative non-decreasing function satisfying !(2t) • 2!(t) for t ‚ 0. We prove, with an additional growth condition on !, that jf(x) i f(y)jC maxf!(jx i yj);jx i yj fi g
Local Spectral Properties Under Conjugations
2021
AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.
Soft ditopological spaces
2015
We introduce the concept of a soft ditopological space as the "soft Generalization" of the concept of a ditopological space as it is defined in the papers by L.M. Brown and co-authors, see e.g. L. M. Brown, R. Ert?rk, ?. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2) (2004), 171-199. Actually a soft ditopological space is a soft set with two independent structures on it - a soft topology and a soft co-topology. The first one is used to describe openness-type properties of a space while the second one deals with its closedness-type properties. We study basic properties of such spaces and accordingly defined continuous mappings between…
Remark on integrable Hamiltonian systems
1980
An extension ton degrees of freedom of the fact is established that forn=1 the time and the energy constant are canonically conjugate variables. This extension is useful in some cases to get action-angle variables from the general solution of a given integrable Hamiltonian system. As an example the Delaunay variables are proved to be canonical.
Continuous numerical solutions of coupled mixed partial differential systems using Fer's factorization
1999
In this paper continuous numerical solutions expressed in terms of matrix exponentials are constructed to approximate time-dependent systems of the type ut A(t)uxx B(t)u=0; 0 0, u(0;t)=u(p;t)=0; u(x;0)=f(x);06 x6p. After truncation of an exact series solution, the numerical solution is constructed using Fer’s factorization. Given >0 and t0;t1; with 0<t0<t1 and D(t0;t1)=f(x;t); 06x6p; t06t6t1g the error of the approximated solution with respect to the exact series solution is less than uniformly in D(t0;t1). An algorithm is also included. c 1999 Elsevier Science B.V. All rights reserved. AMS classication: 65M15, 34A50, 35C10, 35A50
Gibbs states, algebraic dynamics and generalized Riesz systems
2020
In PT-quantum mechanics the generator of the dynamics of a physical system is not necessarily a self-adjoint Hamiltonian. It is now clear that this choice does not prevent to get a unitary time evolution and a real spectrum of the Hamiltonian, even if, most of the times, one is forced to deal with biorthogonal sets rather than with on orthonormal basis of eigenvectors. In this paper we consider some extended versions of the Heisenberg algebraic dynamics and we relate this analysis to some generalized version of Gibbs states and to their related KMS-like conditions. We also discuss some preliminary aspects of the Tomita-Takesaki theory in our context.
Truncated modules and linear presentations of vector bundles
2018
We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.