Search results for "Computational Mathematic"

showing 10 items of 987 documents

Numerische Lösung gewöhnlicher Differentialgleichungen mit Splinefunktionen

1980

In dieser Arbeit wird ein allgemeines Verfahren zur Erzeugung von Splineapproximationen fur die Losungen von Anfangswertproblemen bei gewohnlichen Differentialgleichungen vorgestellt. Einige der bekannten Spline-approximationsmethoden sind als Spezialfalle enthalten. Eine gangige Vorgehensweise besteht darin, das Intervall, uber dem das Anfangswertproblem gegeben ist, in aquidistante Teilintervalle zu zerlegen und dann sukzessive die Splineapproximation zu definieren. Hierbei wird gefordert, das die Spline-approximation in den Knoten gewisse Bedingungen erfullt. Bei dem hier betrachteten allgemeinen Verfahren werden in den einzelnen Teilintervallen noch zusatzliche Zwischenknoten eingefuhrt…

Computational MathematicsNumerical AnalysisComputational Theory and MathematicsPhilosophyHumanitiesComputer communication networksSoftwareComputer Science ApplicationsTheoretical Computer ScienceComputing
researchProduct

On a topology optimization problem governed by two-dimensional Helmholtz equation

2015

The paper deals with a class of shape/topology optimization problems governed by the Helmholtz equation in 2D. To guarantee the existence of minimizers, the relaxation is necessary. Two numerical methods for solving such problems are proposed and theoretically justified: a direct discretization of the relaxed formulation and a level set parametrization of shapes by means of radial basis functions. Numerical experiments are given.

Computational MathematicsControl and OptimizationLevel setLevel set methodDiscretizationHelmholtz equationApplied MathematicsNumerical analysisTopology optimizationMathematical analysisRelaxation (approximation)ParametrizationMathematicsComputational Optimization and Applications
researchProduct

A microstructural model for homogenisation and cracking of piezoelectric polycrystals

2019

Abstract An original three-dimensional generalised micro-electro-mechanical model for computational homogenisation and analysis of degradation and micro-cracking of piezoelectric polycrystalline materials is proposed in this study. The model is developed starting from a generalised electro-mechanical boundary integral representation of the micro-structural problem for the individual bulk grains and a generalised cohesive formulation is employed for studying intergranular micro-damage initiation and evolution into intergranular micro-cracks. To capture the electro-mechanical coupling at the evolving damaging intergranular interfaces, standard mechanical cohesive laws are enriched with suitab…

Materials scienceMechanical EngineeringNumerical analysisComputational MechanicsGeneral Physics and AstronomyBoundary (topology)010103 numerical & computational mathematicsMechanicsMicro-mechanicDegrees of freedom (mechanics)Intergranular corrosionPiezoelectric material01 natural sciencesComputer Science ApplicationsMicro-cracking010101 applied mathematicsPolycrystalline materialMechanics of MaterialsBoundary element methodGrain boundaryCrystalliteBoundary value problem0101 mathematicsComputational homogenisationReduction (mathematics)
researchProduct

Exponential convergence andH-c multiquadric collocation method for partial differential equations

2003

The radial basis function (RBF) collocation method uses global shape functions to interpolate and collocatethe approximate solution of PDEs. It is a truly meshless method as compared to some of the so-calledmeshless or element-free finite element methods. For the multiquadric and Gaussian RBFs, there are twoways to make the solution converge—either by refining the mesh size

Numerical AnalysisRegularized meshless methodPartial differential equationApplied MathematicsGaussianMathematical analysisResidualSingular boundary methodComputational Mathematicssymbols.namesakeCollocation methodsymbolsOrthogonal collocationRadial basis functionAnalysisMathematicsNumerical Methods for Partial Differential Equations
researchProduct

On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems

2018

This work is aimed at the derivation of reliable and efficient a posteriori error estimates for convection-dominated diffusion problems motivated by a linear Fokker-Planck problem appearing in computational neuroscience. We obtain computable error bounds of the functional type for the static and time-dependent case and for different boundary conditions (mixed and pure Neumann boundary conditions). Finally, we present a set of various numerical examples including discussions on mesh adaptivity and space-time discretisation. The numerical results confirm the reliability and efficiency of the error estimates derived.

Work (thermodynamics)Discretizationelliptic partial differential equations01 natural sciencesdiffuusiodiffuusio (fysikaaliset ilmiöt)mesh-adaptivityFOS: MathematicsNeumann boundary conditionApplied mathematicsBoundary value problemMathematics - Numerical Analysis0101 mathematicsDiffusion (business)virheanalyysiMathematicsosittaisdifferentiaaliyhtälötconvection-dominated diffusion problemsApplied Mathematicsta111010102 general mathematicsComputer Science - Numerical AnalysisNumerical Analysis (math.NA)a posteriori error estimation010101 applied mathematicsparabolic partial differential equationsComputational MathematicsElliptic partial differential equationA priori and a posterioriFokker–Planck equation
researchProduct

Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation

2019

International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.

ComputationFOS: Physical sciences010103 numerical & computational mathematicsFixed point01 natural sciencesRegularization (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Davey-Stewartson equationsFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Mathematics[PHYS]Physics [physics]Nonlinear Sciences - Exactly Solvable and Integrable SystemsScattering010102 general mathematicsStatistical and Nonlinear PhysicsD-bar problemsNumerical Analysis (math.NA)Condensed Matter PhysicsFourier spectral methodGeneralized minimal residual methodIntegral equationAlgebraic equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Limit
researchProduct

Approximate Taylor methods for ODEs

2017

Abstract A new method for the numerical solution of ODEs is presented. This approach is based on an approximate formulation of the Taylor methods that has a much easier implementation than the original Taylor methods, since only the functions in the ODEs, and not their derivatives, are needed, just as in classical Runge–Kutta schemes. Compared to Runge–Kutta methods, the number of function evaluations to achieve a given order is higher, however with the present procedure it is much easier to produce arbitrary high-order schemes, which may be important in some applications. In many cases the new approach leads to an asymptotically lower computational cost when compared to the Taylor expansio…

di Bruno's formulaODE integratorsGeneral Computer ScienceTaylor methodsComputer Science (all)MathematicsofComputing_NUMERICALANALYSISGeneral EngineeringOde010103 numerical & computational mathematicsFunction (mathematics)Present procedure01 natural sciencesFaà di Bruno's formula; ODE integrators; Taylor methods; Computer Science (all); Engineering (all)010101 applied mathematicssymbols.namesakeEngineering (all)FaÃ&nbspTaylor seriessymbolsCalculusApplied mathematics0101 mathematicsMathematics
researchProduct

Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators

2016

In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.

Pure mathematicsFredholm theoryDrazin invertible operatorGeneral MathematicsMathematics::Rings and Algebras010102 general mathematicsDrazin inverse010103 numerical & computational mathematicsType (model theory)01 natural sciencesFredholm theorylaw.inventionAlgebrasymbols.namesakeOperator (computer programming)Invertible matrixlawSettore MAT/05 - Analisi MatematicasymbolsBrowder and Weyl type theoremMathematics (all)0101 mathematicsMathematics
researchProduct

Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds

2016

ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.

Abelian integralCarlson symmetric formQuarter periodApplied Mathematics010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsLegendre formSlater integralsElliptic integral0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

New dimension indices for the characterization of the solvent-accessible surface

2001

Computational MathematicsTheoretical physicssymbols.namesakeDimension (vector space)ChemistryQuantum mechanicssymbolsVan der Waals radiusGeneral ChemistryFractal dimensionAccessible surface areaCharacterization (materials science)Journal of Computational Chemistry
researchProduct