Search results for "Computer Hardware"
showing 10 items of 378 documents
Bluetooth-3G wireless transmission system for neural signal telemetry
2007
In this contribution a wireless transmission system for neural signals is developed. This system includes data compression algorithms at the information source, namely neural signals recorded by micro-electrode arrays. The signals are transmitted over Bluetooth to a mobile device that, without any processing or storing, retransmits it over 3G to a remote server where signal post-processing and analysis is performed. The overall transmission rate of the system is limited by the Bluetooth link between the information source and the mobile phone, as well as by the limited processing capabilities of the mobile device and also by the 3G-link. Data compression allows the transmission of up to 7 n…
Apnea detection using cardiac rhythm and its hardware implementation
2009
Abstract Sleep apnea is a sleep disorder characterized by pauses in breathing during sleep. Its detection is very important to avoid important disorders in the patients such as daytime fatigue and sleepiness, which might be very dangerous in certain work places. One of the methods to detect apnea is based in the cardiac rhythm, measuring some parameters which indicate the presence of respiration abnormalities. This work describes the used algorithm to detect apnea and its hardware implementation in an FPGA device for real time detection using the electrocardiogram (ECG) signal.
An interface protection system based on an embedded metrology system platform
2021
Abstract The aim of this work is to present an interface protection system (IPS) for Distributed Generators (DG) and Energy Storage Systems (ESS). The new prototype of IPS guarantees standard protection requirements, in terms of both voltage and frequency measurement accuracies and trip times. Moreover, it has the additional functionalities of implementing a communication link between the Distribution System Operator (DSO) and the DG and ESS Inverter. The new IPS is based on a smart meter platform with an integrated power line communication modem. Moreover, it has also an integrated metrology section. Experimental tests will show how this last feature allows a significant reduction of the m…
Cost comparison of image rotation implantations on static and dynamic Reconfigurable FPGAs
2002
FPGA components are widely used today to perform various algorithms (digital filtering) in real time. The emergence of Dynamically Reconfigurable (DR) FPGAs made it possible to reduce the number of necessary resources to carry out an image processing application (tasks chain). We present in this article an image processing application (image rotation) that exploits the FPGA 's dynamic reconfiguration feature. A comparison is undertaken between the dynamic and static reconfiguration by using two criteria, cost and performance criteria. For the sake of testing the validity of our approach in terms of Algorithm and Architecture Adequacy, we realized an AT40K40 based board ARDOISE.
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
2011
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ‘‘radio- hybrid’’ measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features …
Finding near-perfect parameters for hardware and code optimizations with automatic multi-objective design space explorations
2012
Summary In the design process of computer systems or processor architectures, typically many different parameters are exposed to configure, tune, and optimize every component of a system. For evaluations and before production, it is desirable to know the best setting for all parameters. Processing speed is no longer the only objective that needs to be optimized; power consumption, area, and so on have become very important. Thus, the best configurations have to be found in respect to multiple objectives. In this article, we use a multi-objective design space exploration tool called Framework for Automatic Design Space Exploration (FADSE) to automatically find near-optimal configurations in …
Hardware-accelerated spike train generation for neuromorphic image and video processing
2014
Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without a…
Fast spiking neural network architecture for low-cost FPGA devices
2012
Spiking Neural Networks (SNN) consist of fully interconnected computation units (neurons) based on spike processing. This type of networks resembles those found in biological systems studied by neuroscientists. This paper shows a hardware implementation for SNN. First, SNN require the inputs to be spikes, being necessary a conversion system (encoding) from digital values into spikes. For travelling spikes, each neuron interconnection is characterized by weights and delays, requiring an internal neuron processing by a Postsynaptic Potential (PSP) function and membrane potential threshold evaluation for a postsynaptic output spike generation. In order to model a real biological system by arti…
On the analysis of a random walk-jump chain with tree-based transitions and its applications to faulty dichotomous search
2018
Random Walks (RWs) have been extensively studied for more than a century [1]. These walks have traditionally been on a line, and the generalizations for two and three dimensions, have been by extending the random steps to the corresponding neighboring positions in one or many of the dimensions. Among the most popular RWs on a line are the various models for birth and death processes, renewal processes and the gambler’s ruin problem. All of these RWs operate “on a discretized line”, and the walk is achieved by performing small steps to the current-state’s neighbor states. Indeed, it is this neighbor-step motion that renders their analyses tractable. When some of the transitions are to non-ne…
Two View Line-Based Motion and Structure Estimation for Planar Scenes
2012
We present an algorithm for reconstruction of piece-wise planar scenes from only two views and based on minimum line correspondences. We first recover camera rotation by matching vanishing points based on the methods already exist in the literature and then recover the camera translation by searching among a family of hypothesized planes passing through one line. Unlike algorithms based on line segments, the presented algorithm does not require an overlap between two line segments or more that one line correspon- dence across more than two views to recover the translation and achieves the goal by exploiting photometric constraints of the surface around the line. Experimental results on real…