Search results for "Computer Science - Learning"

showing 8 items of 18 documents

The Recycling Gibbs sampler for efficient learning

2018

Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning, and statistics, employed to draw samples from complicated high-dimensional posterior distributions. The key point for the successful application of the Gibbs sampler is the ability to draw efficiently samples from the full-conditional probability density functions. Since in the general case this is not possible, in order to speed up the convergence of the chain, it is required to generate auxiliary samples whose information is eventually disregarded. In this work, we show that these auxiliary sample…

FOS: Computer and information sciencesMonte Carlo methodSlice samplingInferenceMachine Learning (stat.ML)02 engineering and technologyBayesian inferenceStatistics - Computation01 natural sciencesMachine Learning (cs.LG)010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine LearningArtificial IntelligenceStatistics0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringGaussian processComputation (stat.CO)ComputingMilieux_MISCELLANEOUSMathematicsChain rule (probability)Applied Mathematics020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputer Science - LearningComputational Theory and MathematicsSignal ProcessingsymbolsComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithm[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingGibbs samplingDigital Signal Processing
researchProduct

Optimization of anemia treatment in hemodialysis patients via reinforcement learning

2013

Objective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDP…

MaleFOS: Computer and information sciencesMathematical optimizationDarbepoetin alfaComputer scienceAnemiaComputer Science - Artificial Intelligencemedicine.medical_treatmentMedicine (miscellaneous)Machine Learning (stat.ML)Outcome (game theory)Decision Support TechniquesMachine Learning (cs.LG)Renal DialysisArtificial IntelligenceStatistics - Machine LearningmedicineHumansReinforcement learningDosingAgedProtocol (science)Patient SelectionAnemiaHemoglobin AMiddle Agedmedicine.diseaseMarkov ChainsComputer Science - LearningArtificial Intelligence (cs.AI)Chronic DiseaseHematinicsKidney Failure ChronicFemaleHemodialysisMarkov decision processReinforcement PsychologyAlgorithmsmedicine.drug
researchProduct

Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis

2013

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…

FOS: Computer and information sciencesDiffusion (acoustics)Computer sciencediffusion mapMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Correlation03 medical and health sciencesTotal variation0302 clinical medicineStatistics - Machine LearningVoxel0202 electrical engineering electronic engineering information engineeringComputer Science - Computational Engineering Finance and ScienceCluster analysisdimensionality reductionta113spatial mapsbusiness.industryDimensionality reductionfunctional magnetic resonance imaging (fMRI)Pattern recognitionIndependent component analysisSpectral clusteringComputer Science - Learningindependent component analysista6131020201 artificial intelligence & image processingArtificial intelligenceDYNAMICAL-SYSTEMSbusinesscomputer030217 neurology & neurosurgeryclustering
researchProduct

Joint Gaussian Processes for Biophysical Parameter Retrieval

2017

Solving inverse problems is central to geosciences and remote sensing. Radiative transfer models (RTMs) represent mathematically the physical laws which govern the phenomena in remote sensing applications (forward models). The numerical inversion of the RTM equations is a challenging and computationally demanding problem, and for this reason, often the application of a nonlinear statistical regression is preferred. In general, regression models predict the biophysical parameter of interest from the corresponding received radiance. However, this approach does not employ the physical information encoded in the RTMs. An alternative strategy, which attempts to include the physical knowledge, co…

FOS: Computer and information sciencesHyperparameter010504 meteorology & atmospheric sciencesComputer scienceRemote sensing application0211 other engineering and technologiesMachine Learning (stat.ML)Regression analysis02 engineering and technologyInverse problem01 natural sciencesMachine Learning (cs.LG)Data modelingNonparametric regressionComputer Science - Learningsymbols.namesakeStatistics - Machine LearningRadiative transfersymbolsGeneral Earth and Planetary SciencesElectrical and Electronic EngineeringGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Randomized Block Frank–Wolfe for Convergent Large-Scale Learning

2017

Owing to their low-complexity iterations, Frank-Wolfe (FW) solvers are well suited for various large-scale learning tasks. When block-separable constraints are present, randomized block FW (RB-FW) has been shown to further reduce complexity by updating only a fraction of coordinate blocks per iteration. To circumvent the limitations of existing methods, the present work develops step sizes for RB-FW that enable a flexible selection of the number of blocks to update per iteration while ensuring convergence and feasibility of the iterates. To this end, convergence rates of RB-FW are established through computational bounds on a primal sub-optimality measure and on the duality gap. The novel b…

FOS: Computer and information sciencesMathematical optimization0102 computer and information sciences02 engineering and technology01 natural sciencesMeasure (mathematics)Machine Learning (cs.LG)Convergence (routing)FOS: Mathematics0202 electrical engineering electronic engineering information engineeringFraction (mathematics)Electrical and Electronic EngineeringMathematics - Optimization and ControlMathematicsSequenceDuality gapComputer Science - Numerical Analysis020206 networking & telecommunicationsNumerical Analysis (math.NA)Stationary pointSupport vector machineComputer Science - LearningOptimization and Control (math.OC)010201 computation theory & mathematicsIterated functionSignal ProcessingAlgorithmIEEE Transactions on Signal Processing
researchProduct

Renewable Energy Prediction using Weather Forecasts for Optimal Scheduling in HPC Systems

2014

The objective of the GreenPAD project is to use green energy (wind, solar and biomass) for powering data-centers that are used to run HPC jobs. As a part of this it is important to predict the Renewable (Wind) energy for efficient scheduling (executing jobs that require higher energy when there is more green energy available and vice-versa). For predicting the wind energy we first analyze the historical data to find a statistical model that gives relation between wind energy and weather attributes. Then we use this model based on the weather forecast data to predict the green energy availability in the future. Using the green energy prediction obtained from the statistical model we are able…

FOS: Computer and information sciencesComputer Science - LearningPhysics::Atmospheric and Oceanic PhysicsMachine Learning (cs.LG)
researchProduct

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

2013

Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.

Computational Geometry (cs.CG)FOS: Computer and information sciences[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]Topological Data analysis Persistent homology minimax convergence rates geometric complexes metric spacesGeometric Topology (math.GT)Mathematics - Statistics TheoryStatistics Theory (math.ST)[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG][STAT.TH]Statistics [stat]/Statistics Theory [stat.TH][INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG][ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH][ INFO.INFO-LG ] Computer Science [cs]/Machine Learning [cs.LG]Machine Learning (cs.LG)Computer Science - LearningMathematics - Geometric Topology[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG][INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: Mathematics[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]Computer Science - Computational Geometry[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Forecasting : theory and practice

2022

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a varie…

FOS: Computer and information sciencesComputer Science - Machine LearningTime seriesEconomicsApplicationOther Engineering and Technologies not elsewhere specifiedEconometrics (econ.EM)HAMethodMachine Learning (stat.ML)ReviewStatistics - ApplicationsMachine Learning (cs.LG)FOS: Economics and businessBusiness and EconomicsStatistics - Machine LearningMethodsPrincipleREVIEWApplications (stat.AP)Övrig annan teknikN100Business and International ManagementNationalekonomiEconomics - EconometricsBusiness AdministrationFöretagsekonomiAPPLICATIONSOther Statistics (stat.OT)Wirtschaftswissenschaftenstat.OTStatistics - Other StatisticsComputer Science - Learning003: SystemePRINCIPLESecon.EMApplicationsMETHODSStatistics - Applications; Statistics - Applications; Computer Science - Learning; econ.EM; Statistics - Machine Learning; stat.OTEncyclopediaPredictionPrinciplesREVIEW ENCYCLOPEDIA METHODS APPLICATIONS PRINCIPLES TIME SERIES PREDICTIONForecasting
researchProduct