Search results for "Computer Science - Learning"
showing 8 items of 18 documents
The Recycling Gibbs sampler for efficient learning
2018
Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning, and statistics, employed to draw samples from complicated high-dimensional posterior distributions. The key point for the successful application of the Gibbs sampler is the ability to draw efficiently samples from the full-conditional probability density functions. Since in the general case this is not possible, in order to speed up the convergence of the chain, it is required to generate auxiliary samples whose information is eventually disregarded. In this work, we show that these auxiliary sample…
Optimization of anemia treatment in hemodialysis patients via reinforcement learning
2013
Objective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDP…
Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis
2013
Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…
Joint Gaussian Processes for Biophysical Parameter Retrieval
2017
Solving inverse problems is central to geosciences and remote sensing. Radiative transfer models (RTMs) represent mathematically the physical laws which govern the phenomena in remote sensing applications (forward models). The numerical inversion of the RTM equations is a challenging and computationally demanding problem, and for this reason, often the application of a nonlinear statistical regression is preferred. In general, regression models predict the biophysical parameter of interest from the corresponding received radiance. However, this approach does not employ the physical information encoded in the RTMs. An alternative strategy, which attempts to include the physical knowledge, co…
Randomized Block Frank–Wolfe for Convergent Large-Scale Learning
2017
Owing to their low-complexity iterations, Frank-Wolfe (FW) solvers are well suited for various large-scale learning tasks. When block-separable constraints are present, randomized block FW (RB-FW) has been shown to further reduce complexity by updating only a fraction of coordinate blocks per iteration. To circumvent the limitations of existing methods, the present work develops step sizes for RB-FW that enable a flexible selection of the number of blocks to update per iteration while ensuring convergence and feasibility of the iterates. To this end, convergence rates of RB-FW are established through computational bounds on a primal sub-optimality measure and on the duality gap. The novel b…
Renewable Energy Prediction using Weather Forecasts for Optimal Scheduling in HPC Systems
2014
The objective of the GreenPAD project is to use green energy (wind, solar and biomass) for powering data-centers that are used to run HPC jobs. As a part of this it is important to predict the Renewable (Wind) energy for efficient scheduling (executing jobs that require higher energy when there is more green energy available and vice-versa). For predicting the wind energy we first analyze the historical data to find a statistical model that gives relation between wind energy and weather attributes. Then we use this model based on the weather forecast data to predict the green energy availability in the future. Using the green energy prediction obtained from the statistical model we are able…
Optimal rates of convergence for persistence diagrams in Topological Data Analysis
2013
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
Forecasting : theory and practice
2022
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a varie…