6533b85ffe1ef96bd12c1bf3
RESEARCH PRODUCT
Randomized Block Frank–Wolfe for Convergent Large-Scale Learning
Georgios B. GiannakisGang WangLiang ZhangDaniel Romerosubject
FOS: Computer and information sciencesMathematical optimization0102 computer and information sciences02 engineering and technology01 natural sciencesMeasure (mathematics)Machine Learning (cs.LG)Convergence (routing)FOS: Mathematics0202 electrical engineering electronic engineering information engineeringFraction (mathematics)Electrical and Electronic EngineeringMathematics - Optimization and ControlMathematicsSequenceDuality gapComputer Science - Numerical Analysis020206 networking & telecommunicationsNumerical Analysis (math.NA)Stationary pointSupport vector machineComputer Science - LearningOptimization and Control (math.OC)010201 computation theory & mathematicsIterated functionSignal ProcessingAlgorithmdescription
Owing to their low-complexity iterations, Frank-Wolfe (FW) solvers are well suited for various large-scale learning tasks. When block-separable constraints are present, randomized block FW (RB-FW) has been shown to further reduce complexity by updating only a fraction of coordinate blocks per iteration. To circumvent the limitations of existing methods, the present work develops step sizes for RB-FW that enable a flexible selection of the number of blocks to update per iteration while ensuring convergence and feasibility of the iterates. To this end, convergence rates of RB-FW are established through computational bounds on a primal sub-optimality measure and on the duality gap. The novel bounds extend the existing convergence analysis, which only applies to a step-size sequence that does not generally lead to feasible iterates. Furthermore, two classes of step-size sequences that guarantee feasibility of the iterates are also proposed to enhance flexibility in choosing decay rates. The novel convergence results are markedly broadened to encompass also nonconvex objectives, and further assert that RB-FW with exact line-search reaches a stationary point at rate $\mathcal{O}(1/\sqrt{t})$. Performance of RB-FW with different step sizes and number of blocks is demonstrated in two applications, namely charging of electrical vehicles and structural support vector machines. Extensive simulated tests demonstrate the performance improvement of RB-FW relative to existing randomized single-block FW methods.
year | journal | country | edition | language |
---|---|---|---|---|
2017-12-15 | IEEE Transactions on Signal Processing |