Search results for "Computers"
showing 10 items of 3243 documents
Computer Science Meets Ecology (Dagstuhl Seminar 17091)
2017
This report summarizes the program and main outcomes of the Dagstuhl Seminar 17091 entitled ``Computer Science Meets Ecolog''. Ecology is a discipline that poses many challenging problems involving big data collection, provenance and integration, as well as difficulties in data analysis, prediction and understanding. All these issues are precisely the arena where computer science is concerned. The seminar motivation was rooted in the belief that ecology could largely benefit from modern computer science. The seminar attracted scientists from both fields who discussed important topics in ecology (e.g. botany, animal science, biogeochemistry) and how to approach them with machine learning, co…
Volcanic structures investigation through SAR and seismic interferometric methods: The 2011-2013 Campi Flegrei unrest episode
2019
Observations from satellites provide high-resolution images of ground deformation allowing to infer deformation sources by developing advanced modeling of magma ascent and intrusion processes. Nevertheless, such models can be strongly biased without a precise model of the internal structure of the volcano. In this study, we jointly exploited two interferometric techniques to interpret the 2011–2013 unrest at Campi Flegrei caldera (CFc). The first is the Interferometric Synthetic Aperture Radar (InSAR) technique, which provides highly-resolved spatial and temporal images of ground deformation. The second is the Ambient Noise Tomography (ANT), which images subsurface structures, providing the…
Analysis of directional effects on atmospheric correction
2013
Abstract Atmospheric correction in the Visible and Near Infrared (VNIR) spectral range of remotely sensed data is significantly simplified if we assume a Lambertian target. However, natural surfaces are anisotropic. Therefore, this assumption will introduce an error in surface directional reflectance estimates and consequently in the estimation of vegetation indexes such as the Normalized Difference Vegetation Index (NDVI) and the surface albedo retrieval. In this paper we evaluate the influence of directional effects on the atmospheric correction and its impact in the NDVI and albedo estimation. First, we derived the NDVI and surface albedo from data corrected assuming a Lambertian surface…
Derivation of global vegetation biophysical parameters from EUMETSAT Polar System
2020
Abstract This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological–Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key par…
Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
2012
Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
2020
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Statistical retrieval of atmospheric profiles with deep convolutional neural networks
2019
Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…
Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …
2011
International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…
Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses
2020
The use of unmanned aerial vehicles (UAVs) in earth science research has drastically increased during the last decade. The reason being innumerable advantages to detecting and monitoring various environmental processes before and after certain events such as rain, wind, flood, etc. or to assess the current status of specific landforms such as gullies, rills, or ravines. The UAV equipped sensors are a key part to success. Besides commonly used sensors such as cameras, radar sensors are another possibility. They are less known for this application, but already well established in research. A vast number of research projects use professional radars, but they are expensive and difficult to hand…