Search results for "Concentration Polarization"

showing 8 items of 18 documents

CFD modelling of profiled membranes channels for reverse electrodialysis

2014

Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations were perform…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysiComputational fluid dynamicsProfiled membraneConcentration polarizationSettore ING-IND/19 - Impianti Nucleari
researchProduct

Computational Fluid Dynamics of Reverse Electrodialysis Systems

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysisSpacerCFDConcentration polarizationProfiled membrane
researchProduct

CFD simulation of Electrodialysis channels equipped with profiled membranes

Electrodialysis (ED) is a membrane-based electrochemical process that remove ions from a solution. The main use of ED is for the production of drinking water by brackish water desalination, but there are several other applications. ED is characterized by the coexistence and the interaction of different physical phenomena that affect the stack performance. Among them, fluid dynamics and mass transport are crucial: concentration polarization affects the limiting current density and the non-Ohmic voltage drop due to the chemical potential difference between the two solutions; pressure drop affects the pumping power consumption. Moreover, the total energy consumption depends also on the Ohmic v…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariElectrodialysis Profiled membrane CFD Concentration polarization Pressure drop
researchProduct

Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study

2016

Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Filtration and Separation02 engineering and technologyCFD; Concentration polarization; Mass transfer; Reverse electrodialysis (RED); Spacer-filled channel; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBiochemistryProtein filamentsymbols.namesake020401 chemical engineeringReversed electrodialysisMass transferFluid dynamicsGeneral Materials ScienceMass transfer0204 chemical engineeringPhysical and Theoretical ChemistryConcentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationPressure dropSettore ING-IND/24 - Principi Di Ingegneria ChimicaChromatographyChemistryReverse electrodialysis (RED)Reynolds numberMechanics021001 nanoscience & nanotechnologysymbolsMaterials Science (all)0210 nano-technologyCFD
researchProduct

CFD prediction of scalar transport in thin channels for reverse electrodialysis

2014

Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments the other of woven filaments. The transport of two passive scalars, representative of the ions …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryChemistrySettore ING-IND/25 - Impianti ChimiciScalar (mathematics)Ocean EngineeringMechanicsCFD Salinity Gradient Power renewable energy Reverse Electro Dialysis water electric energy spacer woven polarization concentration concentration boundary layer.Computational fluid dynamicsElectrodialysisPollutionReversed electrodialysisFluid dynamicsOsmotic powerElectronic engineeringSettore ING-IND/06 - FluidodinamicaPeriodic boundary conditionsbusinessWater Science and TechnologyConcentration polarization
researchProduct

Thermal potential of ion-exchange membranes and its application to thermoelectric power generation

2016

The low efficiency and high price of thermoelectric semiconductors has generated interest in unconventional forms of thermoelectric materials. In this article, ionic thermoelectricity has been studied with commercial ion-exchange membranes for different aqueous 1:1 electrolytes. The theory of thermal membrane potential has been derived taking into account the ionic heats of transport, the non-isothermal Donnan potentials, the temperature polarization, and the thermally-induced concentration polarization of the electrolyte. Also the generated thermoelectric power has been experimentally studied. The experiments show good agreement with the theory, and suggest ways for systematic improvement …

TRANSPORTED ENTROPYNon-isothermal electrodiffusionHALIDE SOLUTIONSThermodynamicsFiltration and Separation02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesBiochemistrySeebeck coefficientThermoelectric effectAQUEOUS-SOLUTIONSGeneral Materials SciencePhysical and Theoretical ChemistryPolarization (electrochemistry)NONISOTHERMAL SYSTEMSta116Concentration polarizationIonic heat of transportChemistryTEMPERATURE POLARIZATIONThermal membrane potentialThermoelectric power generation021001 nanoscience & nanotechnologyThermoelectric materialsELECTROLYTE-SOLUTIONSSODIUM-CHLORIDE0104 chemical sciencesIonic Seebeck coefficientThermoelectric generatorMembraneMASS-TRANSPORTIon-exchange membranes0210 nano-technologyCHARGED MEMBRANESSORET COEFFICIENTSJOURNAL OF MEMBRANE SCIENCE
researchProduct

Determination of limiting current density and current efficiency in electrodialysis units

2018

Abstract A crucial parameter for the design and operation of electrodialysis (ED) units is the limiting current density (LCD). This is often identified with the diffusion-limited current density, which corresponds to the complete solute depletion in the layer adjacent to the membrane. Current-voltage curves obtained from measurements with electrodes in contact with the solution (i.e. without membranes) are consistent with this interpretation and exhibit a horizontal plateau identifying LCD. However, real ED systems show more complex behaviours, with a reduced-slope tract instead of a plateau and a third region in which the current increases more markedly (overlimiting current). The phenomen…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technologyPlateau (mathematics)Electrodialysi020401 chemical engineeringGeneral Materials ScienceChemical Engineering (all)0204 chemical engineeringDiffusion (business)Concentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationIon exchange membraneWater Science and TechnologyMechanical EngineeringChemistry (all)Limiting currentGeneral ChemistryMechanicsElectrodialysis021001 nanoscience & nanotechnologyLimiting current densityCurrent efficiencyMaterials Science (all)Current (fluid)0210 nano-technologyCurrent densityDesalination
researchProduct

Counterion transport numbers of poly(acrylic acid)-grafted porous ion-exchange membranes as determined from current step measurements

1997

Abstract The effect of an electric current on the concentration polarization of the external bathing solutions and the permselectivity of poly(acrylic acid)-grafted porous ion-exchange membranes has been studied. The experimental approach is based on the transient behavior of the total electric potential drop through the membrane cell when a current step is imposed from external nonpolarizable electrodes. When this voltage drop is recorded as a function of time, a transition time characteristic of each membrane system is obtained. From this time, the counterion transport number for the salt solution (KClH2O) in the membrane can be obtained. The theoretical modeling is based on the time-dep…

chemistry.chemical_classificationGeneral Chemical EngineeringDrop (liquid)chemistry.chemical_compoundMembranechemistryChemical engineeringPolymer chemistryElectrodeElectrochemistryElectric potentialCounterionElectric currentAcrylic acidConcentration polarizationElectrochimica Acta
researchProduct